【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD.
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F(xiàn),使四邊形ABFE是等腰直角四邊形.求AE的長.

【答案】
(1)

解:①因為AB=CD=1,AB//CD,

所以四邊形ABCD是平行四邊形.

又因為AB=BC,

所以ABCD是菱形.

又因為∠ABC=90度,

所以菱形ABCD是正方形.

所以BD= .

②如圖1,連結(jié)AC,BD,

因為AB=BC,AC⊥BD,

所以∠ABD=∠CBD,

又因為BD=BD,

所以△ABD△CBD,

所以AD=CD.


(2)

解:若EF與BC垂直,則AE≠EF,BF≠EF,

所以四邊形ABFE不是等腰直角四邊形,不符合條件;

若EF與BC不垂直,

①當(dāng)AE=AB時,如圖2,

此時四邊形ABFE是等腰直角四邊形.

所以AE=AB=5.

②當(dāng)BF=AB時,如圖3,

此時四邊形ABFE是等腰直角四邊形.

所以BF=AB=5,

因為DE//BF,

所以△PED~△PFB,

所以DE:BF=PD:PB=1:2,

所以AE=9-2.5=6.5.

綜上所述,AE的長為5或6.5.


【解析】(1)①由AB=CD=1,AB//CD,根據(jù)“有一組對邊平行且相等的四邊形是平行四邊形”可得四邊形ABCD是平行四邊形.由鄰邊相等AB=BC,有一直角∠ABC=90度,所以菱形ABCD是正方形.則BD= ;②連結(jié)AC,BD,由AB=BC,AC⊥BD,可知四邊形ABCD是一個箏形,則只要證明△ABD△CBD,即可得到AD=CD.(2)分類討論:若EF與BC垂直,明示有AE≠EF,BF≠EF,即EF與兩條鄰邊不相等;由∠A=∠ABC=90°,可分類討論AB=AE時,AB=BF時去解答.
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的判定的相關(guān)知識,掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于A(2,﹣1),B( ,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對“隔離直線”給出如下定義:
點P(x,m)是圖形G1上的任意一點,點Q(x,n)是圖形G2上的任意一點,若存在直線l:kx+b(k≠0)滿足m≤kx+b且n≥kx+b,則稱直線l:y=kx+b(k≠0)是圖形G1與G2的“隔離直線”.
如圖1,直線l:y=﹣x﹣4是函數(shù)y= (x<0)的圖象與正方形OABC的一條“隔離直線”.

(1)在直線y1=﹣2x,y2=3x+1,y3=﹣x+3中,是圖1函數(shù)y= (x<0)的圖象與正方形OABC的“隔離直線”的為;
請你再寫出一條符合題意的不同的“隔離直線”的表達(dá)式:;
(2)如圖2,第一象限的等腰直角三角形EDF的兩腰分別與坐標(biāo)軸平行,直角頂點D的坐標(biāo)是( ,1),⊙O的半徑為2.是否存在△EDF與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達(dá)式;若不存在,請說明理由;

(3)正方形A1B1C1D1的一邊在y軸上,其它三邊都在y軸的右側(cè),點M(1,t)是此正方形的中心.若存在直線y=2x+b是函數(shù)y=x2﹣2x﹣3(0≤x≤4)的圖象與正方形A1B1C1D1的“隔離直線”,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在第1個△ABA1中,∠B=20°,AB=A1B,在A1B上取一點C,延長AA1A2使得A1A2=A1C;在A2C上取一點D,延長A1A2A3,使得A2A3=A2D;…,按此做法進(jìn)行下去,第n個三角形的以An為頂點的內(nèi)角的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.

(1)判斷∠ADC是否是直角,并說明理由;

(2)試求四邊形草坪ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義點P(a,b)的“變換點”為Q.且規(guī)定:當(dāng)a≥b時,Q為(b,﹣a);當(dāng)a<b時,Q為(a,﹣b).
(1)點(2,1)的變換點坐標(biāo)為;
(2)若點A(a,﹣2)的變換點在函數(shù)y= 的圖象上,求a的值;
(3)已知直線l與坐標(biāo)軸交于(6,0),(0,3)兩點.將直線l上所有點的變換點組成一個新的圖形記作M. 判斷拋物線y=x2+c與圖形M的交點個數(shù),以及相應(yīng)的c的取值范圍,請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 為等邊三角形,D、E 分別是邊 AC、BC 上的點,且ADCE,AE BD 相交于點 P.

(1)求∠BPE 的度數(shù);

(2)若 BFAE 于點 F,試判斷 BP PF 的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

同步練習(xí)冊答案