【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過(guò)點(diǎn)(0,–3),(2,–3).

(1)求拋物線的表達(dá)式;

(2)求拋物線的頂點(diǎn)坐標(biāo)及與x軸交點(diǎn)的坐標(biāo);

【答案】(1)拋物線的表達(dá)式為:;

(2)拋物線與x軸交點(diǎn)的坐標(biāo)為(–1,0),(3,0).

【解析】分析:(1)把兩個(gè)已知點(diǎn)的坐標(biāo)代入得到關(guān)于b、c的方程組,然后解方程組即可確定拋物線解析式; (2)(1)中的一般式配成頂點(diǎn)式即可得到拋物線的頂點(diǎn)坐標(biāo),然后通過(guò)解可得到拋物線與x軸的交點(diǎn)坐標(biāo).

本題解析:1)把(0–3)代入, ,

把(2,–3)代入 ,

所以拋物線解析式為:

2)由(1)得 ∴頂點(diǎn)坐標(biāo)為(1,–4),

解得

∴拋物線與x軸交點(diǎn)的坐標(biāo)為(–1,0),(30).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是( 。

A.有一組鄰邊相等的平行四邊形是正方形

B.有一個(gè)角是直角的平行四邊形是正方形

C.對(duì)角線相等的菱形是正方形

D.對(duì)角線互相平分的矩形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的為8,B是數(shù)軸上一點(diǎn),且AB=14,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示);

(2)動(dòng)點(diǎn)H從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、H同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)H?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,時(shí)鐘是我們常見(jiàn)的生活必需品,其中蘊(yùn)含著許多數(shù)學(xué)知識(shí).

1我們知道,分針和時(shí)針轉(zhuǎn)動(dòng)一周都是 度,分針轉(zhuǎn)動(dòng)一周是 分鐘,時(shí)針轉(zhuǎn)動(dòng)一周有12小時(shí),等于720分鐘;所以,分針每分鐘轉(zhuǎn)動(dòng) 度,時(shí)針每分鐘轉(zhuǎn)動(dòng) .

25:005:30,分針與時(shí)針各轉(zhuǎn)動(dòng)了多少度?

3請(qǐng)你用方程知識(shí)解釋:從1:00開(kāi)始,在1:002:00之間,是否存在某個(gè)時(shí)刻,時(shí)針與分針在同一條直線上?若不存在,說(shuō)明理由;若存在,求出從1:00開(kāi)始經(jīng)過(guò)多長(zhǎng)時(shí)間,時(shí)針與分針在同一條直線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果4x2mxy+9y2是一個(gè)完全平方式,則m=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式中能用平方差公式計(jì)算的是(
A.(a+3b)(3a﹣b)
B.(3a﹣b)(3a﹣b)
C.(3a﹣b)(﹣3a+b)
D.(3a﹣b)(3a+b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC=C,點(diǎn)E在線段AC上,DAB的延長(zhǎng)線上,且有BD=CE,連接DEBCF,過(guò)EFGBCG.試說(shuō)明線段EF、FG、CG之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(a+b)(a+b4)=﹣4,那么(a+b)=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,

(1)若半徑為1的⊙O經(jīng)過(guò)點(diǎn)A、B、D,且∠A=60°,求此時(shí)菱形的邊長(zhǎng);

(2)若點(diǎn)P為AB上一點(diǎn),把菱形ABCD沿過(guò)點(diǎn)P的直線a折疊,使點(diǎn)D落在BC邊上,利用無(wú)刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說(shuō)明作法和理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案