【題目】已知:已知二次函數(shù)的圖象與軸交于兩點.交軸于點,點是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點

(1)畫出圖象,并求二次函數(shù)的解析式.

(2)根據(jù)圖象直接寫出使一次函數(shù)值大于或等于二次函數(shù)值的的取值范圍.

(3)若直線與軸交點為,連接,,求三角形的面積.

【答案】(1);(2);(3)4.

【解析】

(1)直接將已知點代入函數(shù)解析式求出即可;(2)利用函數(shù)圖像結(jié)合交點坐標得出使一次函數(shù)值大于或等于二次函數(shù)值的x的取值范圍;(3)分別得出EO,AB的長,進而得出面積.

解:(1)設二次函數(shù)的解析式為,、常數(shù)),

根據(jù)題意得

解得:,

所以二次函數(shù)的解析式為:;

(2)如圖,一次函數(shù)值大于二次函數(shù)值的的取值范圍是:;

(3)∵對稱軸:

設直線代入,

,

解得:,

故直線的解析式為:,

代入求得

又∵

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關系如圖,下列信息:

(1)出租車的速度為100千米/時;

(2)客車的速度為60千米/時;

(3)兩車相遇時,客車行駛了3.75時;

(4)相遇時,出租車離甲地的路程為225千米.

其中正確的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,每個小方格都是邊長為1個單位的小正方形,點A、B、C都是格點每個小方格的頂點叫格點,其中,,

外接圓的圓心坐標是______;

外接圓的半徑是______;

已知D、E、F都是格點成位似圖形,則位似中心M的坐標是______;

請在網(wǎng)格圖中的空白處畫一個格點,使,且相似比為:1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列 材料,并解答總題:

材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.

解:由分母x+1,可設

=

∵對于任意上述等式成立

,

解得,

這樣,分式就拆分成一個整式與一個分式的和的形式.

1)將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式為___________

2)已知整數(shù)使分式的值為整數(shù),則滿足條件的整數(shù)=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ACD中,AD=9,CD=3,ABC中,AB=AC

1)如圖1,若CAB=60°,ADC=30°,在ACD外作等邊ADD′

求證:BD=CD′;

BD的長.

2)如圖2,若CAB=90°,ADC=45°,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠BAC=45°,CDAB,垂足為點D,M為線段DB上一動點(不包括端點),點N在直線AC左上方且∠NCM=135°,CN=CM,如圖①.

1)求證:∠ACN=AMC;

2)記△ANC得面積為5,記△ABC得面積為5.求證:;

3)延長線段AB到點P,使BP=BM,如圖②.探究線段AC與線段DB滿足什么數(shù)量關系時對于滿足條件的任意點M,AN=CP始終成立?(寫出探究過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過點A(1,0),

B(3,2)

(1)求m的值和拋物線的解析式;

(2)求不等式x2+bx+c>x+m的解集(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc0;②2a﹣b=0③4a+2b+c0;若(﹣5,y1),(,y2)是拋物線上兩點,則

y1y2.其中說法正確的是( )

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,AB=AC,過AB上一點D作DE∥AC交BC于點E,以E為頂點,ED為一邊,作∠DEF=∠A,另一邊EF交AC于點F.

(1)求證:四邊形ADEF為平行四邊形;

(2)當點D為AB中點時,判斷ADEF的形狀;

(3)延長圖①中的DE到點G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案