【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關(guān)系如圖,下列信息:
(1)出租車的速度為100千米/時;
(2)客車的速度為60千米/時;
(3)兩車相遇時,客車行駛了3.75小時;
(4)相遇時,出租車離甲地的路程為225千米.
其中正確的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,設(shè)D為銳角△ABC內(nèi)一點,∠ADB=∠ACB+90°.
(1)求證:∠CAD+∠CBD=90°;
(2)如圖2,過點B作BE⊥BD,BE=BD,連接EC,若ACBD=ADBC,
①求證:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB上一點,過點D作DE⊥BC,交直線MN于點E,垂足為F,連接CD,BE.
(1)當(dāng)點D是AB的中點時,四邊形BECD是什么特殊四邊形?說明你的理由.
(2)在(1)的條件下,當(dāng)∠A=__________°時,四邊形BECD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015山東省德州市,24,12分)已知拋物線y=-mx2+4x+2m與x軸交于點A(α,0), B(β,0),且.
(1)求拋物線的解析式.
(2)拋物線的對稱軸為l,與y軸的交點為C,頂點為D,點C關(guān)于l的對稱點為E.是否存在x軸上的點M、y軸上的點N,使四邊形DNME的周長最。咳舸嬖,請畫出圖形(保留作圖痕跡),并求出周長的最小值;若不存在,請說明理由.
(3)若點P在拋物線上,點Q在x軸上,當(dāng)以點D、E、P、Q為頂點的四邊形是平行四邊形時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.
(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;
(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;
(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,運載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達A點時,從位于地面R處的雷達測得AR的距離是40km,仰角是30°,n秒后,火箭到達B點,此時仰角是45°,則火箭在這n秒中上升的高度是_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖以正方形ABCD的B點為坐標(biāo)原點.BC所在直線為x軸,BA所在直線為y軸,建立直角坐標(biāo)系.設(shè)正方形ABCD的邊長為6,順次連接OA、OB、OC、OD的中點A1、B1、C1、D1,得到正方形A1B1C1D1,再順次連接OA1、OB1、OC1、OD1的中點得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設(shè)An點的坐標(biāo)為(xn,yn),則xn+yn=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:已知二次函數(shù)的圖象與軸交于和兩點.交軸于點,點,是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點,
(1)畫出圖象,并求二次函數(shù)的解析式.
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于或等于二次函數(shù)值的的取值范圍.
(3)若直線與軸交點為,連接,,求三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com