【題目】(一)如圖(1),已知圓,點在圓上,且為等邊三角形,點為直線與圓的一個交點.連接,,證明:

(方法遷移)

(二)如圖(2),用直尺和圓規(guī)在矩形內(nèi)作出所有的點,使得(不寫作法,保留作圖痕跡).

(深入探究)

(三)已知矩形,,邊上的點,若滿足的點P恰有兩個,求的取值范圍.

(四)已知矩形,,,為矩形內(nèi)一點,且,若點繞點逆時針旋轉到點,求的最小值,并求此時的面積.

【答案】1)見詳解;

2)見詳解 ;

32≤m<2+.

4的最小值為-2.,并求此時的面積是.

【解析】

1)根據(jù)圓周角定理即可證明;

2)根據(jù)圓周角定理可知點∠BPC所對弧所對的圓心角等于90°,所以作出一個90°的圓心角即可;

3)由點P要在AD上,且有兩個,故AD應與圓O相交,且要在EF的上方,從而先算出臨界值,則m在它們之間.

4)先確定出當A,P,O在同一直線上時,AP取得最小值,從而得出此時PQ取得最小值,畫出圖形,利用勾股定理求解即可.利用相似三角形的性質和判定求出的高,再利用三角形的面積計算公式計算即可.

證明:(1)如圖1所示,連接AP,BP.

為等邊三角形,

∴∠AOB=60°.

∵∠APB=∠AOB,

∴∠APB=30°.

解:(2)如圖2所示:點P上即可.

3)由(2)得,要使的點P恰有兩個,則AD與相交,如圖3所示,

①當AD與⊙O相切時,連接OP,并延長POBC相交于Q,

AD與⊙O相切,

∴∠APQ=90°,

∵四邊形ABCD是矩形,

∴∠A=∠ABQ=90°.

∴∠A=∠ABQ=∠APQ=90°.

∴四邊形ABQP為矩形,

∴PQ=AB=m.

∵△BOC是等腰直角三角形,

∴OQ=BC=,OB=2.

∴PQ=2+.

m<2+.

②當ADEF重合時,

m=BE=BC=2

綜上所述,m的取值范圍為:2m<2+.

(4)如圖4所示:

依題意可知,當A,P,O在同一直線上時,AP有最小值,此時PQ最小.

過點OOHBCH,作OGABG,過點PPMABM,連接OP,OB.

∵∠GBH=90°

∴四邊形BGOH為矩形,

OG=BH=BC=.

∵∠BPC=120°,

∴∠BOC=120°,

OB=OC,

∴∠OBH=30°.

∴設OH=x,則OB=2x.

RtOBH

OB2-OH2=BH2,

4x2-x2=()2,

解得:x=1.

OH=1,OB=2.

AB=3,

AG=4.

RtAGO

OA==

AP=-2.

根據(jù)旋轉的性質可知,AQ=AP=-2,∠PAQ=90°,

根據(jù)勾股定理可求得:PQ==AP=-2.

OGAB,PMAB

PMOG,

=

OG=,AP=-2,OA=

PM=.

的面積=ABPM=3=.

答:的最小值為-2.,并求此時的面積是.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有若干個除顏色外其余均相同的紅、黃、藍三種顏色的小球,其中紅球2個,藍球1個,若從中任意摸出一個球,摸到的球是紅球的概率為.

(1)求袋中黃球的個數(shù);

(2)第一次任意摸出一個球(不放回),第二次再摸出一個球,利用樹狀圖或劉表格求兩次摸到球的顏色是紅色與黃色的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在RtABC 中, D、E是斜邊BC上兩動點,且∠DAE=45°,將△繞點逆時針旋轉90后,得到△,連接.

1)試說明:△≌△

(2)當BE=3,CE=9時,求∠BCF的度數(shù)和DE的長; 

3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜邊BC所在直線上一點,BD=3BC=8,求DE2的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】材料閱讀:如圖①所示的圖形,像我們常見的學習用品圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖”.

解決問題:

1)觀察規(guī)形圖,試探究,,之間的數(shù)量關系,并說明理由;

2)請你直接利用以上結論,解決以下兩個問題:

.如圖②,把一塊三角尺放置在上,使三角尺的兩條直角邊恰好經(jīng)過點,,若,則_____.

.如圖③,平分,平分,若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ykx+mk0)與拋物線yx2+bx+c相交于拋物線的頂點P和另一點Q

1)若點P2,﹣c),Q的橫坐標為﹣1.求點Q的坐標;

2)過點Qx軸的平行線與拋物線yx2+bx+c的對稱軸相交于點E,直線PQy軸交于點M,若PE2EQc(﹣b<﹣2),求點Q的縱坐標;

3)在(2)的條件下,求OMQ的面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a,b,cABC的三邊,滿足,且abc12.

(1)試求ab,c的值;

(2)試求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.

(1)求拋物線的解析式及頂點坐標;

(2)軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABACDBC中點,FAC中點,AN是△ABC的外角∠MAC的角平分線,延長DFAN于點E,連接CE

1)求證:四邊形ADCE是矩形;

2)填空:①若BCAB4,則四邊形ABDE的面積為  

②當△ABC滿足  時,四邊形ADCE是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《朗讀者》自播以來,以其厚重的文化底蘊和感人的人文情懷,感動了數(shù)以億計的觀眾,沭陽縣某中學開展“朗讀”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100)如圖所示。

⑴根據(jù)圖示填寫表格;

平均數(shù)

中位數(shù)

眾數(shù)

九⑴班

85

85

九⑵班

80

⑵如果規(guī)定成績較穩(wěn)定的班級勝出,你認為哪個班級能勝出?說明理由。

查看答案和解析>>

同步練習冊答案