【題目】如圖所示,有一張長為、寬為的長方形紙片,現(xiàn)要在這張紙片上畫兩個小長方形,使小長方形的每條邊都與大長方形的一邊平行,并且每個小長方形的長與寬之比也都為,然后把它們剪下,這時,所剪得的兩張小長方形紙片的周長之和有最大值.求這個最大值.

【答案】剪得的兩張小長方形紙片的周長之和有最大值是

【解析】

因為畫線的方案不同,所剪得的兩張小長方形紙片的周長之和不同,要把每種畫線的周長之和求出來其比較其大小,取最大值即可

要考慮不同的畫線方案可歸納為如下四類

1)如圖①,其周長和為

 2×2×1+2×)=5;

2)如圖②其周長和為

 2x+3x+2[1x+31x]=8.

3)如圖③其周長和為8

4)如圖④其周長和為23x+x+2[3x+]=x+8

03x10x,∴當x=,周長和有最大值9

綜上所述剪得的兩張小長方形紙片的周長之和有最大值是9

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線相交于點D,DEABDFAC,垂足分別為EF,AB6AC4,則BE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育老師為了解本校九年級女生1分鐘仰臥起坐體育測試項目的達標情況,從該校九年級136名女生中,隨機抽取了20名女生,進行了1分鐘仰臥起坐測試,獲得數(shù)據(jù)如下:

收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測試成績(個)如下:

38 46 42 52 55 43 59 46 25 38

35 45 51 48 57 49 47 53 58 49

(1)整理、描述數(shù)據(jù):請你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補充完整:

范圍

25≤x≤29

30≤x≤34

35≤x≤39

40≤x≤44

45≤x≤49

50≤x≤54

55≤x≤59

人數(shù)

   

   

   

   

   

   

   

(說明:每分鐘仰臥起坐個數(shù)達到49個及以上時在中考體育測試中可以得到滿分)

(2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:

平均數(shù)

中位數(shù)

滿分率

46.8

47.5

45%

得出結(jié)論:①估計該校九年級女生在中考體育測試中1分鐘仰臥起坐項目可以得到滿分的人數(shù)為   ;

②該中心所在區(qū)縣的九年級女生的1分鐘仰臥起坐總體測試成績?nèi)缦拢?/span>

平均數(shù)

中位數(shù)

滿分率

45.3

49

51.2%

請你結(jié)合該校樣本測試成績和該區(qū)縣總體測試成績,為該校九年級女生的1分鐘仰臥起坐達標情況做一下評估,并提出相應建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊和等邊,點的延長線上,的延長線交于點M,連,若,則

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,,對角線,相交于點,將直線繞點順時針旋轉(zhuǎn),分別交于點,,下列說法不正確的是(

A. 時,四邊形一定為平行四邊形

B. 當四邊形為直角梯形時,線段

C. 時,四邊形一定為菱形

D. 在旋轉(zhuǎn)的過程中,線段總相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,

(1)作出△ABC關于y軸對稱的△A′B′C′,并寫出△A′B′C′三個頂點的坐標.

(2)直接寫出△ABC的面積為______.

(3)x軸上畫出點P,使PA+PC最小.(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列方程化成的形式,寫出其中的值,并計算的值:

; ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

已知,在RtABC中,ACBC,∠C90°DAB邊的中點,∠EDF90°,∠EDF繞點D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長線)于點E,F

1)(問題發(fā)現(xiàn))

如圖1,當∠EDF繞點D旋轉(zhuǎn)到DEAC于點E時(如圖1),

①證明:△ADE≌△BDF;

②猜想:SDEF+SCEF   SABC

2)(類比探究)

如圖2,當∠EDF繞點D旋轉(zhuǎn)到DEAC不垂直時,且點E在線段AC上,試判斷SDEF+SCEFSABC的關系,并給予證明.

3)(拓展延伸)

如圖3,當點E在線段AC的延長線上時,此時問題(2)中的結(jié)論是否成立?若成立,請給予證明;若不成立,SDEF,SCEF,SABC又有怎樣的關系?(寫出你的猜想,不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點E在⊙O上,過點E的切線與AB的延長線交于點D,連接BE,過點OBE的平行線,交⊙O于點F,交切線于點C,連接AC

(1)求證:AC是⊙O的切線;

(2)連接EF,當∠D=  °時,四邊形FOBE是菱形.

查看答案和解析>>

同步練習冊答案