【題目】請將下列證明過程補充完整:

已知:如圖,點BE分別在AC、DF上,AF分別交BD、CE于點M、N,∠1=∠2∠A=∠F

求證:∠C=∠D

證明:因為∠1=∠2(已知),

又因為∠1=∠ANC ),

所以 (等量代換).

所以 (同位角相等,兩直線平行),

所以∠ABD=∠C ).

又因為∠A=∠F(已知),

所以 ).

所以 (兩直線平行,內(nèi)錯角相等).

所以∠C=∠D ).

【答案】見解析.

【解析】

根據(jù)對頂角相等,可得∠1=∠ANC,然后由∠1=∠2,根據(jù)等量代換可得∠2=∠ANC,再結(jié)合平行線的性質(zhì)與判定可完成填空.

證明:因為∠1=∠2(已知),

又因為 對頂角相等 ),

所以∠2=∠ANC (等量代換).

所以 BD EC (同位角相等,兩直線平行),

所以 兩直線平行,同位角相等 ).

又因為(已知),

所以 AC DF 內(nèi)錯角相等,兩直線平行 ).

所以 ∠D=∠DBA (兩直線平行,內(nèi)錯角相等).

所以 等量代換

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不能得出BEDF的是( 。

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從、兩地同時出發(fā),甲車勻速前往地,到達地后立即以另一速度按原路勻速返回到; 乙車勻速前往地,設(shè)甲、乙兩車距地的路程為(千米),甲車行駛的時間為時), 之間的函數(shù)圖象如圖所示

1)甲車從地到地的速度是__________千米/時,乙車的速度是__________千米/;

2)求甲車從地到達地的行駛時間;

3)求甲車返回時之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

4)求乙車到達地時甲車距地的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L:y=-x+2x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點MA點以每秒1個單位的速度沿x軸向左移動.

(1)求A、B兩點的坐標;

(2)△COM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

(3)當t為何值時△COM≌△AOB,并求此時M點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點A表示數(shù)a,點B表示數(shù)b,點C表示數(shù)c,b是最小的正整數(shù),a、c滿足AB表示點AB之間的距離,且

1________,________;

2)若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù)________表示的點重合;

3)點ABC在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則________,________.(用含t的代數(shù)式表示)

4)在(3)的條件下,請問:的值是否隨著時間t的變化而改變?若變化,請說明理由,若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,貨輪O在航行過程中,發(fā)現(xiàn)燈塔A在它南偏東60°的方向上,同時,在它北偏東30°、西北(即北偏西45°)方向上又分別發(fā)現(xiàn)了客輪B和海島C

1)仿照表示燈塔方位的方法,分別畫出表示客輪B和海島C方向的射線OB、OC(不寫作法);

2)若圖中有一艘漁船D,且∠AOD的補角是它的余角的3倍,求出∠AOD的度數(shù);

3)畫出表示漁船D方向的射線OD,則漁船D在貨輪O  (寫出方位角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

如圖,點EF在BC上,BE=CF,A=D,B=C,AF與DE交于點O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

1;

2;

3;

4;

……

根據(jù)上述等式的規(guī)律,解答下列問題:

1)寫出第5個等式:________________;

2)寫出第個等式:__________________(用含有的代數(shù)式表示);

3)應(yīng)用你發(fā)現(xiàn)的規(guī)律,計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索代數(shù)式a2 2ab+b2與代數(shù)式(a b)2的關(guān)系.

1)當a=1,b=2時分別計算兩個代數(shù)式的值.

2)當a=3,b= 2時分別計算兩個代數(shù)式的值.

3)你發(fā)現(xiàn)了什么規(guī)律?

4)利用你發(fā)現(xiàn)的規(guī)律計算:732 2×73×67+672.

查看答案和解析>>

同步練習(xí)冊答案