【題目】如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是( )
A. B. C. D. 10
【答案】B
【解析】
如圖,作DH⊥AB于H,CM⊥AB于M.由tanA==2,設(shè)AE=a,BE=2a,利用勾股定理構(gòu)建方程求出a,再證明DH=BD,推出CD+BD=CD+DH,由垂線段最短即可解決問(wèn)題.
如圖,作DH⊥AB于H,CM⊥AB于M.
∵BE⊥AC,
∴∠AEB=90°,
∵tanA==2,設(shè)AE=a,BE=2a,
則有:100=a2+4a2,
∴a2=20,
∴a=2或-2(舍棄),
∴BE=2a=4,
∵AB=AC,BE⊥AC,CM⊥AB,
∴CM=BE=4(等腰三角形兩腰上的高相等))
∵∠DBH=∠ABE,∠BHD=∠BEA,
∴,
∴DH=BD,
∴CD+BD=CD+DH,
∴CD+DH≥CM,
∴CD+BD≥4,
∴CD+BD的最小值為4.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(4,m),AB⊥x軸,且△AOB的面積為2.
(1)求k和m的值;
(2)若點(diǎn)C(x,y)也在反比例函數(shù)y=的圖象上,當(dāng)-3≤x≤-1時(shí),求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”為我們打開(kāi)了交流、合作的大門(mén),也為沿線各國(guó)在商貿(mào)等領(lǐng)域提供了更多的便捷,2018年11月5日至10日,首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)在國(guó)家會(huì)展中心(上海)舉辦,據(jù)哈外貿(mào)商會(huì)發(fā)布消息,博覽會(huì)期間,哈Paseka公司與重慶某國(guó)際貿(mào)易公司簽訂了供應(yīng)蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重慶某國(guó)際貿(mào)易公司供給優(yōu)質(zhì)蜂蜜共3000萬(wàn)件,該公司順應(yīng)新時(shí)代購(gòu)物流,打算分線上和線下兩種方式銷(xiāo)售.
(1)若計(jì)劃線上銷(xiāo)售量不低于線下銷(xiāo)售量的25%,求該公司計(jì)劃在線下銷(xiāo)售量最多為多少萬(wàn)件?
(2)該公司在12月上旬銷(xiāo)售優(yōu)質(zhì)蜂蜜共240萬(wàn)件,且線上線下銷(xiāo)售單件均為100元/件.12月中旬決定線上銷(xiāo)售單價(jià)下調(diào)m%,線下銷(xiāo)售單價(jià)不變,在這種情況下,12月中旬銷(xiāo)售總量比上旬增加了m%,且中旬線上銷(xiāo)售量占中旬總銷(xiāo)量的,結(jié)果中旬銷(xiāo)售總金額比上旬銷(xiāo)售總金額提高了m%.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E,連接BD.
(1)求證:DE是⊙O的切線;
(2)若BD=3,AD=4,則DE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E在BC邊上,點(diǎn)F在DC的延長(zhǎng)線上,且∠DAE=∠F.
(1) 求證:△ABE∽△ECF;
(2) 若AB=5,AD=8,BE=2,求FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn),,若點(diǎn)滿足,,那么稱點(diǎn)是點(diǎn),的融合點(diǎn).
例如:,,當(dāng)點(diǎn)滿是,時(shí),則點(diǎn)是點(diǎn),的融合點(diǎn),
(1)已知點(diǎn),,,請(qǐng)說(shuō)明其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)的融合點(diǎn).
(2)如圖,點(diǎn),點(diǎn)是直線上任意一點(diǎn),點(diǎn)是點(diǎn),的融合點(diǎn).
①試確定與的關(guān)系式.
②若直線交軸于點(diǎn),當(dāng)為直角三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=4,連接AC,O是AC的中點(diǎn),M是AD上一點(diǎn),且MD=1,P是BC上一動(dòng)點(diǎn),則PM﹣PO的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到△AED,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是E、D.F為AC的中點(diǎn),連接BF、DF、BE,DF與EA相交于點(diǎn)G,BE與AC相交于點(diǎn)H.
(1)如圖1,求證:四邊形BFDE為平行四邊形;
(2)如圖2,連接CE,在不添加任何輔助線與字母的情況下,請(qǐng)直接寫(xiě)出所有與△AEC全等的三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com