【題目】如圖,在矩形ABCD中,AB3AD4,連接AC,OAC的中點,MAD上一點,且MD1,PBC上一動點,則PMPO的最大值為_____

【答案】

【解析】

連接MO并延長交BCP,則此時,PMPO的值最大,且PMPO的最大值=OM,根據(jù)全等三角形的性質(zhì)得到AMCP3OMOP,求得PB1,過MMNBCN,得到四邊形MNCD是矩形,得到MNCDCNDM,根據(jù)勾股定理即可得到結(jié)論.

解:在矩形ABCD中,AD4,MD1,

AM3,

連接MO并延長交BCP,

則此時,PMPO的值最大,且PMPO的最大值=OM

AMCP,

∴∠MAOPCO

∵∠AOMCOP,AOCO,

∴△AOM≌△COPASA),

AMCP3OMOP

PB1,

MMNBCN

四邊形MNCD是矩形,

MNCDCNDM,

PN4112,

MP

OM,

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】 為倡導低碳生活,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實物圖.車架檔ACCD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2

1)求車架檔AD的長;

2)求車座點E到車架檔AB的距離.

(結(jié)果精確到1 cm.參考數(shù)據(jù): sin75°="0.966," cos75°=0.259,tan75°=3.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代城市綠化帶在不斷擴大,綠化用水的節(jié)約是一個非常重要的問題.

如圖1、圖2所示,某噴灌設備由一根高度為0.64 m的水管和一個旋轉(zhuǎn)噴頭組成,水管豎直安裝在綠化帶地面上,旋轉(zhuǎn)噴頭安裝在水管頂部(水管頂部和旋轉(zhuǎn)噴頭口之間的長度、水管在噴灌區(qū)域上的占地面積均忽略不計),旋轉(zhuǎn)噴頭可以向周圍噴出多種拋物線形水柱,從而在綠化帶上噴灌出一塊圓形區(qū)域.現(xiàn)測得噴的最遠的水柱在距離水管的水平距離3 m處達到最高,高度為1 m

1)求噴灌出的圓形區(qū)域的半徑;

2)在邊長為16 m的正方形綠化帶上固定安裝三個該設備,噴灌區(qū)域可以完全覆蓋該綠化帶嗎?如果可以,請說明理由;如果不可以,假設水管可以上下調(diào)整高度,求水管高度為多少時,噴灌區(qū)域恰好可以完全覆蓋該綠化帶.(以上需要畫出示意圖,并有必要的計算、推理過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC10,tanA2BEAC于點E,D是線段BE上的一個動點,則的最小值是( )

A. B. C. D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過點 ,與軸交于另一點,頂點為

1)求拋物線的解析式,并寫出點的坐標;

2)如圖,點分別在線段上(點不與重合),且,則能否為等腰三角形?若能,求出的長;若不能,請說明理由;

3)若點在拋物線上,且,試確定滿足條件的點的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”小長假期間,某超市為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性購物滿500元以上均可獲得兩次摸球的機會(摸出小球后放回).超市根據(jù)兩小球所標金額的和返還相應的代金券.

1)顧客甲購物1000元,則他最少可獲   元代金券,最多可獲   元代金券.

2)請用樹形圖或列表方法,求出顧客甲獲得不低于30元(含30元)代金券的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展經(jīng)典誦讀進校園活動,某校團委組織八年級100名學生進行經(jīng)典誦讀選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表。

組別

分數(shù)段

頻次

頻率

A

60x<70

17

0.17

B

70x<80

30

a

C

80x<90

b

0.45

D

90x<100

8

0.08

請根據(jù)所給信息,解答以下問題:

(1)表中a=___,b=___

(2)請計算扇形統(tǒng)計圖中B組對應扇形的圓心角的度數(shù);

(3)已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EFBC相交于點G,連接CF

1)求證:DAE≌△DCF;

2)求證:ABG∽△CFG;

3)若正方形ABCD的的邊長為2GBC的中點,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD1AB.將矩形ABCD繞著點B順時針旋轉(zhuǎn)90°得到矩形.聯(lián)結(jié),分別交邊CD,E、F.如果AE,那么

查看答案和解析>>

同步練習冊答案