如圖,在矩形ABCD中,M、N分別AD、BC的中點(diǎn),P、Q分別BM、DN的中點(diǎn).
(1)求證:四邊形MPNQ是菱形;
(2)若AB=2,BC=4,求四邊形MPNQ的面積.
(1)證明:∵四邊形ABCD是矩形,
∴AD=BC,AD∥BC.
連結(jié)MN,∵M、N分別AD、BC的中點(diǎn),
∴MD=AD,BN=BC.
∴MD=BN,MD∥BN,∴四邊形BNDM是平行四邊形.
∴MB=ND.…………………………1分
∵P、Q分別BM、DN的中點(diǎn),∴MP=MB,NQ=DN.
∴MP=NQ.
又∵MP∥NQ,∴四邊形MPNQ是平行四邊形.…………………………2分
∵ABCD為矩形,M、N分別AD、BC的中點(diǎn),
∴四邊形ABNM為矩形,∴MN⊥BC.
∴在Rt△MNB中,PN=BM.∴PN=PM.………………3分
∴四邊形MPNQ是菱形.…………………………4分
(2)∵AB=2,BC=4,∴MN=BN=2
∵P為MB的中點(diǎn),∴PN⊥MB,PN
在Rt△MNB中,MB=…………………5分
∴,∴四邊形MPNQ是邊長(zhǎng)為的正方形.
∴四邊形MPNQ的面積為……………………………7分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
一組數(shù)據(jù)2,7,6,3,4, 7的眾數(shù)和中位數(shù)分別是( )
A.7和4.5 B.4和6 C.7和4 D.7和5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在某公益活動(dòng)中,小明對(duì)本班同學(xué)的捐款情況進(jìn)行了統(tǒng)計(jì),繪制成如圖不完整的統(tǒng)計(jì)圖.其中捐100元的人數(shù)占全班總?cè)藬?shù)的25%,則本次捐款的中位數(shù)是 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,是半圓,O為AB中點(diǎn),C、D兩點(diǎn)在上,且AD∥OC,連接BC、BD.若=62,則∠ABD的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某批發(fā)商以40元/千克的成本價(jià)購入了某產(chǎn)品700千克,據(jù)市場(chǎng)預(yù)測(cè),該產(chǎn)品的銷售價(jià)y(元/千克)與保存時(shí)間x(天)的函數(shù)關(guān)系為y=50+2x,但保存這批產(chǎn)品平均每天將損耗15千克,且最多保存15天.另外,批發(fā)商每天保存該批產(chǎn)品的費(fèi)用為50元.
(1)若批發(fā)商在保存該產(chǎn)品5天時(shí)一次性賣出,則可獲利 元.
(2)如果批發(fā)商希望通過這批產(chǎn)品賣出獲利10000元,則批發(fā)商應(yīng)在保存該產(chǎn)品多少天時(shí)一次性賣出?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某地發(fā)生特大洪災(zāi),政府為了盡快搭建板房安置災(zāi)民,給某廠下達(dá)了生產(chǎn)A種板材48000㎡和B種板材24000㎡的任務(wù).
⑴如果該廠安排210人生產(chǎn)這兩種板材,每人每天能生產(chǎn)A種板材60㎡或B種板材40㎡,請(qǐng)問:應(yīng)分別安排多少人生產(chǎn)A種板材和B種板材,才能確保同時(shí)完成各自的生產(chǎn)任務(wù)?
⑵某災(zāi)民安置點(diǎn)計(jì)劃用該廠生產(chǎn)的兩種板材搭建甲、乙兩種規(guī)格的板房共400間,已知
建設(shè)一間甲型板房和一間乙型板房所需板材及安置人數(shù)如下表所示:
板房 | A種板材(m2) | B種板材(m2) | 安置人數(shù) |
甲型 | 108 | 61 | 12 |
乙型 | 156 | 51 | 10 |
問這400間板房最多能安置多少災(zāi)民?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)A、B在直線上,AB=10cm,⊙B的半徑為1cm,點(diǎn)C在直線上,過點(diǎn)C作直線CD且∠DCB=30°,直線CD從A點(diǎn)出發(fā)以每秒4cm的速度自左向右平行運(yùn)動(dòng),與此同時(shí),⊙B的半徑也不斷增大,其半徑r(cm)與時(shí)間t(秒)之間的關(guān)系式為r=1+t(t≥0),當(dāng)直線CD出發(fā) _______________秒直線CD恰好與⊙B 相切.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com