分析 分別將x=0、y=0代入一次函數(shù)解析式求出與之對應(yīng)的y、x值,由此即可得出點Q、P的坐標,再根據(jù)RM⊥x軸結(jié)合公共角∠OPQ=∠MPR即可得出△OPQ∽△MPR,結(jié)合兩三角形面積相等即可得出△OPQ≌△MPR,依據(jù)全等三角形的性質(zhì)即可得出點R的坐標,將其代入反比例函數(shù)解析式中即可得出關(guān)于k的分式方程,解之即可得出結(jié)論.
解答 解:當x=0時,y=kx-4=-4,
∴點Q(0,-4);
當y=kx-4=0時,x=$\frac{4}{k}$,
∴點P($\frac{4}{k}$,0).
∵RM⊥x軸,
∴∠POQ=∠PMR=90°.
又∵∠OPQ=∠MPR,
∴△OPQ∽△MPR.
∵△OPQ與△PRM的面積相等,
∴△OPQ≌△MPR,
∴OP=MP,OQ=MR,
∴點R($\frac{8}{k}$,4).
∵點R在雙曲線y=$\frac{k}{x}$上,
∴4=$\frac{k}{\frac{8}{k}}$,解得:k=4$\sqrt{2}$或k=-4$\sqrt{2}$(舍去).
經(jīng)檢驗,k=4$\sqrt{2}$是方程4=$\frac{k}{\frac{8}{k}}$的解.
故答案為:4$\sqrt{2}$.
點評 本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次函數(shù)圖象上點的坐標特征、相似三角形的判定、全等三角形的性質(zhì)以及反比例函數(shù)圖象上點的坐標特征,根據(jù)全等三角形的性質(zhì)找出點R的坐標是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 6 | C. | 5 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com