【題目】已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx 2 +2mx4m≠0)的圖象與x軸交于點AB(點A在點B的左側(cè)),與y軸交于點C,△ABC的面積為12

1)求這個二次函數(shù)的解析式;

2)點D的坐標(biāo)為(-2,1),點P在二次函數(shù)的圖象上,∠ADP為銳角,且tanADP=2,求出點P的橫坐標(biāo);

【答案】1y=x2+x-4;(2)點P橫坐標(biāo)為-2

【解析】

1)根據(jù)對稱軸坐標(biāo)公式可求二次函數(shù)圖象的對稱軸;當(dāng)x0時,y=﹣4,可求點C的坐標(biāo)為(0,﹣4),根據(jù)三角形面積公式可求AB6.進一步得到A點和B點的坐標(biāo)分別為(﹣4,0),(2,0).待定系數(shù)法可求二次函數(shù)的解析式;

2)作DFx軸于點F.分兩種情況:(。┊(dāng)點P在直線AD的下方時;(ⅱ)當(dāng)點P在直線AD的上方時,延長P1A至點G使得AGAP1,連接DG,作GHx軸于點H,兩種情況討論可求點P1的坐標(biāo);

1)由題意可得:該二次函數(shù)圖象的對稱軸為直線x=﹣1;

∵當(dāng)x0時,y=﹣4,

∴點C的坐標(biāo)為(0,﹣4),

SABCAB|yC|12

AB6

又∵點A,B關(guān)于直線x=﹣1對稱,

A點和B點的坐標(biāo)分別為(﹣4,0),(20).

4m+4m40,解得m

∴所求二次函數(shù)的解析式為yx2+x4

2)如圖,作DFx軸于點F.分兩種情況:

(。┊(dāng)點P在直線AD的下方時,如圖所示.

由(1)得點A(﹣40),點D(﹣2,1),

DF1AF2

RtADF中,∠AFD90°,得tanADF2

延長DF與拋物線交于點P1,則P1點為所求.

∴點P1的坐標(biāo)為(﹣2,﹣4).

(ⅱ)當(dāng)點P在直線AD的上方時,延長P1A至點G使得AGAP1,連接DG,作GHx軸于點H,如圖所示.

可證△GHA≌△P1FA

HAAF,GHP1FGAP1A

又∵A(﹣4,0),P1(﹣2,﹣4),

∴點G的坐標(biāo)是(﹣6,4).

在△ADP1中,

DA,DP15

AP12,

DA2+AP12DP12

∴∠DAP190°.

DAGP1

DGDP1

∴∠ADG=∠ADP1

tanADGtanADP1=2

設(shè)DG與拋物線的交點為P2,則P2點為所求.

DKGH于點K,作P2SGKDK于點S

設(shè)P2點的坐標(biāo)為(xx2+x4),

P2Sx2+x41x2+x5DS=﹣2x

GK3,DK4,得

整理,得2x2+7x140

解得x

P2點在第二象限,

P2點的橫坐標(biāo)為x(舍正).

綜上,P點的橫坐標(biāo)為﹣2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,AO平分∠BAC,交BC于點O.以O為圓心,OC為半徑作⊙O,分別交AOBC于點E,F

1)求證:AB是⊙O的切線;

2)延長AO交⊙O于點D,連接CD,若AD2AC,求tanD的值;

3)在(2)的條件下,設(shè)⊙O的半徑為3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(2,1),(1,1)兩點,則下列關(guān)于此二次函數(shù)的說法正確的是【 】

A.y的最大值小于0      B.當(dāng)x=0時,y的值大于1

C.當(dāng)x=1時,y的值大于1  D.當(dāng)x=3時,y的值小于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,且AD=AC,DEBCDEAB相交于點E,ECAD相交于點F

(1)求證:△ABC∽△FCD

(2)過點AAMBC于點M,求DEAM的值;

(3)SFCD=5BC=10,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為檢測“停課不停學(xué)”期間九年級學(xué)生的復(fù)習(xí)情況,進行了中考數(shù)學(xué)模擬測試并從中隨機抽取了部分學(xué)生的測試成績分成個小組,根據(jù)每個小組的人數(shù)繪制如圖所示的尚不完整的頻數(shù)分布直方圖.

請根據(jù)信息回答下列問題:

若成績在分的頻率為,請計算抽取的學(xué)生人數(shù)并補全頻數(shù)分布直方圖;

在此次測試中,抽取學(xué)生成績的中位數(shù)在______ 分數(shù)段中;

若該校九年級共有名學(xué)生,成績在分以上的()為優(yōu)秀,請通過計算說明,大約有多少名學(xué)生在本次測試中數(shù)學(xué)成績?yōu)閮?yōu)秀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bxca0)交x軸于AB兩點(AB的左側(cè)),交y軸于點C,拋物線的頂點為P,過點BBC的垂線交拋物線于點D

1)若點P的坐標(biāo)為(-4,-1),點C的坐標(biāo)為(0,3),求拋物線的表達式;

2)在(1)的條件下,求點A到直線BD的距離;

3)連接DC,若點P的坐標(biāo)為(-,-),DCx軸,則在x軸上方的拋物線上是否存在點M,使∠AMB=∠BDC?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,AB=2,點D是以A為圓心,半徑為1的圓上一動點,連接CD,取CD的中點E,連接BE,則線段BE的最大值與最小值之和為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點A在拋物線y-x2+2x+30≤x≤3)上運動,直線l經(jīng)過點(0,6),且與y軸垂直,過點AACl于點C,以AC為對角線作矩形ABCD,則另一對角線BD的取值范圍正確的是(  )

A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中A點的坐標(biāo)為(8,y),AB⊥x軸于點B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過AO的中點C,且與AB交于點D

1)求反比例函數(shù)解析式;

2)若函數(shù)y=3xy=的圖象的另一支交于點M,求三角形OMB與四邊形OCDB的面積的比.

查看答案和解析>>

同步練習(xí)冊答案