【題目】如圖,設(shè)D為銳角ABC內(nèi)一點,∠ADB=ACB+90°,過點BBEBDBE=BD,連接EC

1)求∠CAD+CBD的度數(shù);

2)若,

①求證:ACD∽△BCE

②求的值.

【答案】(1)90°;(2)①見解析;②

【解析】

1)根據(jù)三角形外角的性質(zhì)進行解答即可;

2)①根據(jù)兩邊成比例且夾角相等即可證明△ACD∽△BCE

②先根據(jù)等腰直角三角形的性質(zhì)得:,證明△ACB∽△DCE,得,代入所求的式子可得結(jié)論.

1)解:如圖1,延長CDABF

∵∠ADF=∠CAD+ACD,∠BDF=∠CBD+BCD

∴∠ADB=∠ADF+BDF=∠CAD+CBD+ACB,

∵∠ADB=∠ACB+90°

∴∠CAD+CBD90°

2)①證明:如圖2,∵∠CAD+CBD90°,∠CBD+CBE90°,

∴∠CAD=∠CBE,

ACBDADBC,BE=BD,

,

∴△ACD∽△BCE

②解:如圖2,連接DE,

BEBD,BEBD,

∴△BDE是等腰直角三角形,

∵△ACD∽△BCE

∴∠ACD=∠BCE,,

∴∠ACB=∠DCE

∴△ACB∽△DCE,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)某品牌的T恤衫成本是每件10元。根據(jù)市場調(diào)查,以單價13元批發(fā)給經(jīng)銷,商銷商愿意經(jīng)銷5000件,并且表示每降價0.1元,愿意多經(jīng)銷500件。服裝廠決定批發(fā)價在不低于11.4元的前提下,將批發(fā)價下降0.1x.

1)求銷售量yx的關(guān)系,并求出x的取值范圍;

2)不考慮其他因素,請問廠家批發(fā)單價是多少時所獲利潤W可以最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】優(yōu)秀傳統(tǒng)文化進校園活動中,學(xué)校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術(shù),書法,器樂,要求七年級學(xué)生人人參加,并且每人只能參加其中一項活動.教務(wù)處在該校七年級學(xué)生中隨機抽取了100名學(xué)生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).

請解答下列問題:

(1)請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(2)在參加剪紙活動項目的學(xué)生中,男生所占的百分比是多少?

(3)若該校七年級學(xué)生共有500人,請估計其中參加書法項目活動的有多少人?

(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加器樂活動項目的女生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x22x+3.問:

1)該拋物線的頂點坐標是   

2)該函數(shù)與x軸的交點坐標是   ,   ,并在網(wǎng)格中畫出該函數(shù)的圖象;

3x取什么值時,拋物線在x軸上方?   

4)已知yt,t取什么值時與拋物線y=﹣x22x+3有兩個交點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是邊長為2的正方形ABCD的邊BC上的一動點(不與端點重合),將ABE沿AE翻折至AFE的位置,若CDF是等腰三角形,則BE=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,A,B,C,點P為任意一點,已知PAPB,則線段PC的最大值為(

A.3B.5C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三張正面分別寫有數(shù)字﹣11,2的卡片,它們背面完全相同,現(xiàn)將這三張卡片背面朝上洗勻后.

1)隨機抽取一張,求抽到數(shù)字2的概率;

2)隨機抽取一張,以其正面數(shù)字作為a的值,然后再從剩余的兩張卡片隨機抽一張,以其正面的數(shù)字作為b的值,請你用畫樹狀圖或列表格的方法表示所有可能的結(jié)果,并求出點(a,b)在第四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與坐標軸交于A、B兩點,點C的坐標為,二次函數(shù)的圖像經(jīng)過A、B、C三點.

1)求二次函數(shù)的解析式

2)如圖1,已知點在拋物線上,作射線BD,點Q為線段AB上一點,過點Q軸于點M,作于點N,過Q軸交拋物線于點P,當QMQN的積最大時,求點P的坐標;

3)在(2)的條件下,連接AP,若點E為拋物線上一點,且滿足,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知二次函數(shù)yax2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C,對稱軸為直線x1.直線y=﹣x+c與拋物線yax2+bx+c交于C,D兩點,D點在x軸下方且橫坐標小于3,則下列結(jié)論中正確的是( 。

A.ab+c0B.2a+b+c0

C.D.a<﹣1

查看答案和解析>>

同步練習(xí)冊答案