【題目】如圖,在中,,DAB上的點,過點DBC于點F,交AC的延長線于點E,連接CD,,則下列結(jié)論正確的有______ 將所有正確答案的序號都填在橫線上

;;是等邊三角形;,則

【答案】

【解析】

由在ABC中,∠ACB=90°,DEAB,易證得∠DCA=DAC,繼而可得①∠DCB=B正確;

由①可證得AD=BD=CD,即可得②CD=AB正確;

易得③△ADC是等腰三角形,但不能證得ADC是等邊三角形;

由若∠E=30°,易求得∠FDC=FCD=30°,則可證得DF=CF,繼而證得DE=EF+CF.

∵在ABC中,∠ACB=90°,DEAB,

∴∠ADE=ACB=90°,

∴∠A+B=90°,ACD+DCB=90°

∵∠DCA=DAC,

AD=CD,DCB=B;故①正確;

CD=BD,

AD=BD,

CD=AB;故②正確;

DCA=DAC,

AD=CD,

但不能判定ADC是等邊三角形;故③錯誤;

∵若∠E=30°

∴∠A=60°,

∴△ACD是等邊三角形,

∴∠ADC=30°,

∵∠ADE=ACB=90°,

∴∠EDC=BCD=B=30°

CF=DF,

DE=EF+DF=EF+CF.故④正確.

故答案為:①②④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1 000元;經(jīng)粗加工后銷售,每噸利潤可達4 500元;經(jīng)精加工后銷售,每噸利潤漲至7 500元.

當(dāng)?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸;如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷售或加工完畢,為此公司制訂了三種方案:

方案一:將蔬菜全部進行粗加工;

方案二:盡可能多的對蔬菜進行精加工,沒有來得及進行加工的蔬菜,在市場上直接銷售;

方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.

你認(rèn)為選擇哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的數(shù)陣是由77個偶數(shù)排成:

(1)如圖中任意作一個平行四邊形框,設(shè)左上角的數(shù)為x,那么其他3個數(shù)從小到大可分別表示為   

(2)小紅說這4個數(shù)的和是292,能求出這4個數(shù)嗎?若存在,請求出這4個數(shù).不存在說明理由.

(3)小明說4個數(shù)的和是420,存在這樣的數(shù)嗎?若存在,請求出這4個數(shù),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)請你根據(jù)圖中A、B兩點的位置,分別寫出它們所表示的有理數(shù)

A___________ B_____________ ;

2)觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是:_____________

3)若將數(shù)軸折疊,使得A點與-3表示的點重合,則B點與數(shù)_ _表示的點重合;

4)若數(shù)軸上M、N兩點之間的距離為2014MN的左側(cè)),且M、N兩點經(jīng)過(3)中折疊后互相重合,則M、N兩點表示的數(shù)分別是: M: _______ N: _______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:有一長6cm,寬4cm的矩形紙板,現(xiàn)要求以其一組對邊中點所在直線為軸,旋轉(zhuǎn)180°,得到一個圓柱,現(xiàn)可按照兩種方案進行操作:

方案一:以較長的一組對邊中點所在直線為軸旋轉(zhuǎn),如圖①;

方案二:以較短的一組對邊中點所在直線為軸旋轉(zhuǎn),如圖②.

(1)請通過計算說明哪種方法構(gòu)造的圓柱體積大;

(2)如果該矩形的長寬分別是5cm3cm呢?請通過計算說明哪種方法構(gòu)造的圓柱體積大;

(3)通過以上探究,你發(fā)現(xiàn)對于同一個矩形(不包括正方形),以其一組對邊中點所在直線為軸旋轉(zhuǎn)得到一個圓柱,怎樣操作所得到的圓柱體積大(不必說明原因)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,OC平分,C為角平分線上一點,過點C,垂足為C,交OB于點D,OB于點E.

判斷的形狀,并說明理由;

,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點E作EF⊥AB,垂足為點F,與DC的延長線相交于點H,則△DEF的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.

中線AD的取值范圍是

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點,DEDF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案