【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,且DEACAEBD

1)求證:四邊形AODE是矩形.

2)若AB=5,BD=8,求矩形AODE的周長(zhǎng).

【答案】1)見(jiàn)解析;(214

【解析】

1)根據(jù)題意可判斷出四邊形AODE是平行四邊形,再由菱形的性質(zhì)可得出ACBD,即∠AOD90°,繼而可判斷出四邊形AODE是矩形;

2)由菱形的性質(zhì)和勾股定理求出OB,得出OA,由矩形的性質(zhì)即可得出答案.

1)證明:四邊形ABCD是菱形,

∴∠AOD=90°

∵DE//AC,AE//BD,

四邊形AODE是平行四邊形.

四邊形AODE是矩形. 

2四邊形ABCD是菱形,

∴∠AOB=90°,OB=OD=BD=×8=4

Rt△AOB中,

在矩形AODE中,

DE=OA=3,AE=OD=4,

∴ OA+OD+DE+AE=14

即矩形AODE的周長(zhǎng)為14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)在如圖所示的平面直角坐標(biāo)系中描出各點(diǎn),畫(huà)出;

(2)先向左平移3個(gè)單位長(zhǎng)度,再向下平移5個(gè)單位長(zhǎng)度,得到, 請(qǐng)畫(huà)出

(3)的面積;

(4)設(shè)點(diǎn)在坐標(biāo)軸上,且 的面積相等,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式(組)并把解集表示在數(shù)軸上

(1);(2);

(3);(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,

1)證明:

2,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AC與BD相交于點(diǎn)O.若 AO=3,∠OBC=30°,求矩形的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2在矩形紙片ABCD中,AD=6,AB=9.點(diǎn)M,N分別在AB,DC上(M不與A,B重合,N不與C,D重合),現(xiàn)以MN為折痕,將矩形紙片ABCD折疊.

1)當(dāng)B 點(diǎn)落在DC上時(shí)(如圖2),求證:MNB是等腰三角形;

2)當(dāng)B點(diǎn)與D點(diǎn)重合時(shí),試求MNB的面積;

3)當(dāng)B點(diǎn)與AD的中點(diǎn)重合時(shí),試求折痕MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明解方程=3出現(xiàn)了錯(cuò)誤,解答過(guò)程如下:

方程兩邊都乘以(x-2),得1-(1-x)=3(第一步)

去括號(hào),得1-1+x=3(第二步)

移項(xiàng),合并同類項(xiàng),得x=3(第三步)

檢驗(yàn),當(dāng)x=3時(shí)x-2≠0(第四步)

所以x=3是原方程的解.(第五步)

(1)小明解答過(guò)程是從第____步開(kāi)始出錯(cuò)的,原方程化為第一步的根據(jù)是_____

(2)請(qǐng)寫(xiě)出此題正確的解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B旋轉(zhuǎn)得到矩形GBEF.

1)觀察發(fā)現(xiàn):在旋轉(zhuǎn)的過(guò)程中, 的值不變,這個(gè)數(shù)值是   ;

(2)問(wèn)題解決:當(dāng)點(diǎn)G落在直線CD上時(shí),求CE的長(zhǎng);

(3)數(shù)學(xué)思考:在旋轉(zhuǎn)的過(guò)程中,CE是否有最大值,如果有,請(qǐng)直接寫(xiě)出;如果沒(méi)有,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

探究:要研究上面的問(wèn)題,我們不妨先從最簡(jiǎn)單的情形入手,進(jìn)而找到一般性規(guī)律.

探究一:將邊長(zhǎng)為2的正三角形的三條邊分別二等分,連接各邊中點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

如圖①,連接邊長(zhǎng)為2的正三角形三條邊的中點(diǎn),從上往下看:

邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),共有個(gè);

邊長(zhǎng)為2的正三角形一共有1個(gè).

探究二:將邊長(zhǎng)為3的正三角形的三條邊分別三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

如圖②,連接邊長(zhǎng)為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下看:邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),共有個(gè);邊長(zhǎng)為2的正三角形共有個(gè).

探究三:將邊長(zhǎng)為4的正三角形的三條邊分別四等分(圖③),連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫(xiě)出探究過(guò)程)

結(jié)論:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫(xiě)出探究過(guò)程)

應(yīng)用:將一個(gè)邊長(zhǎng)為25的正三角形的三條邊分別25等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形有______個(gè)和邊長(zhǎng)為2的正三角形有______個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案