【題目】已知A(﹣2,3),B1,),點(diǎn)Px軸上一點(diǎn),使得△PAB的面積等于,則點(diǎn)P的坐標(biāo)為_____

【答案】(﹣ ,0)或(,0

【解析】

如圖,設(shè)直線AB的解析式為ykx+b,求得直線AB的解析式為y=﹣x+2,當(dāng)y0時,x4,得到點(diǎn)C的坐標(biāo)為(4,0),設(shè)點(diǎn)P的坐標(biāo)為(a,0),則PC=|4a|,根據(jù)三角形的面積公式即可得到結(jié)論.

解:如圖,設(shè)直線AB的解析式為ykx+b

A(﹣2,3),B1,),

解得:,

∴直線AB的解析式為y=﹣x+2

當(dāng)y0時,x4

∴點(diǎn)C的坐標(biāo)為(4,0),

設(shè)點(diǎn)P的坐標(biāo)為(a,0),則PC=|4a|,

依據(jù)SPABSPACSPBC可得,

×PC×3×PC×,即|4a

解得a=﹣,

∴點(diǎn)P的坐標(biāo)為(﹣0)或(,0),

故答案為:(﹣,0)或(,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,宿豫區(qū)某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,教學(xué)樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,教學(xué)樓頂A在地面上的影子F與墻角C30米的距離(B、F、C在一條直線上).

(1)求教學(xué)樓AB的高度;

(2)若要在A、E之間掛一些彩旗,請你求出A、E之間的距離.(結(jié)果精確到lm)(參考數(shù)據(jù):sin22°,cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與x軸和y軸分別交于點(diǎn)AB,再將沿直線CD對折,使點(diǎn)A與點(diǎn)B重合,直線CDx軸交于點(diǎn)C,與AB交于點(diǎn)D,連接BC.

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)求;

3)在y軸上有一點(diǎn)P,且是等腰三角形,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC是等邊三角形,過點(diǎn)CCDAB,且CDAB,連接BDAC于點(diǎn)O

1)如圖1,求證:AC垂直平分BD

2)如圖2,點(diǎn)MBC的延長線上,點(diǎn)N在線段CO上,且NDNM,連接BN.求證:NBNM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】品中華詩詞,尋文化基因.某校舉辦了第二屆中華詩詞大賽,將該校八年級參加競賽的學(xué)生成績統(tǒng)計(jì)后,繪制了如下不完整的頻數(shù)分布統(tǒng)計(jì)表與頻數(shù)分布直方圖.

頻數(shù)分布統(tǒng)計(jì)表

組別

成績x(分)

人數(shù)

百分比

A

60≤x<70

8

20%

B

70≤x<80

16

m%

C

80≤x<90

a

30%

D

90≤<x≤100

4

10%

請觀察圖表,解答下列問題:

(1)表中a=   ,m=   

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)D組的4名學(xué)生中,有1名男生和3名女生.現(xiàn)從中隨機(jī)抽取2名學(xué)生參加市級競賽,則抽取的2名學(xué)生恰好是一名男生和一名女生的概率為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1y1x+3經(jīng)過點(diǎn)Am5),與y軸的交點(diǎn)為B;直線l2y2kx+b經(jīng)過點(diǎn)AC2,﹣1).

1)求直線l2的解析式,并直接寫出不等式y1y2的解集;

2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)PBE,BD,AC的距離恰好相等,則點(diǎn)P的位置:①在∠B的平分線上;②在∠DAC的平分線上;③在∠ECA的平分線上;④恰是∠B,∠DAC,∠ECA三條角平分線的交點(diǎn),上述結(jié)論中,正確結(jié)論的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖形的折疊即圖形的翻折或者說是對稱變換.這類問題與生活緊密聯(lián)系,內(nèi)容豐富,解法靈活,具有開放性,可以培養(yǎng)我們的動手能力,空間想象能力和幾何變換的思想.在綜合與實(shí)踐課上,每個小組剪了一些如圖1所示的直角三角形紙片(,),并將紙片中的各內(nèi)角進(jìn)行折疊操作:

1)如圖2,“奮斗”小組將紙片中的進(jìn)行折疊,使直角邊落在斜邊上,點(diǎn)落在點(diǎn)位置,折痕為,則的長為______.

2)如圖3,“勤奮”小組將中的進(jìn)行折疊,使點(diǎn)落在直角邊中點(diǎn)上,折痕為,則的長為______.

3)如圖4,“雄鷹”小組將紙片中的進(jìn)行折疊,使點(diǎn)落在直角邊延長線上的點(diǎn)處,折痕為,求出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】打折前,買20件A商品和30件B商品要用2200元,買50件A商品和10件B商品要用2900元.若打折后,買40件A商品和40件B商品用了3240元,比不打折少花多少錢?

查看答案和解析>>

同步練習(xí)冊答案