A. | ①②③ | B. | ①④⑤ | C. | ①③④ | D. | ①③④⑤ |
分析 ①根據(jù)等腰三角形的性質(zhì)和角平分線的性質(zhì),利用等量代換求證∠CAD=∠ADO即可;
②過點O作OG⊥AC,再根據(jù)直角三角形斜邊大于直角邊可證;
③可證得△CED∽△CDO,根據(jù)相似三角形的對應(yīng)邊成比例,可得CD2=OC•CE=$\frac{1}{2}$AB•CE,即可證得結(jié)論;
④利用相似三角形的判定與性質(zhì)以及等腰直角三角形的性質(zhì)得出即可;
⑤△ADO和△DOE不相似,故線段OD不是DE與DA的比例中項.
解答 解:①∵AB是半圓直徑,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于點D,
∴∠CAD=∠DAO=$\frac{1}{2}$∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴故①正確.
②如圖1,過點O作OG⊥AC,連接CG,AG,
∵OG⊥AC,
∴$\widehat{AG}$=$\widehat{CG}$,
∵半徑OC⊥AB于點O,
∴$\widehat{AG}$=$\widehat{CG}$=$\widehat{CD}$,
∴AG=GC=CD,
∴AC<2CD,
∴故②錯誤.
③∵AB是半圓直徑,
∴OC=OD,
∴∠OCD=∠ODC=67.5°,
∵∠CAD=∠ADO=22.5°,
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△CDO,
∴CD:OC=CE:CD,
∴CD2=OC•CE=$\frac{1}{2}$AB•CE,
∴2CD2=CE•AB.
故③正確.
④如圖2,過點E作EM⊥AC于點M,
∵AO=CO,AO⊥CO,
∴∠CAO=∠ACO=45°,
∴CM=ME,
∵AD平分∠CAB分別交OC于點E,
EO⊥AO,EM⊥AC,
∴ME=EO,
∴CM=ME=EO,
∴CE=$\sqrt{2}$ME=$\sqrt{2}$EO,
由①得:∵AC∥OD,
∴△ACE∽△DOE,
∴$\frac{EC}{EO}$=$\sqrt{2}$,
∴$\frac{{S}_{△AEC}}{{S}_{△DEO}}$=($\sqrt{2}$)2=2,
∴S△AEC=2S△DEO;
故④正確,
⑤∵AD平分∠CAB交弧BC于點D,
∴∠CAD=∠DAC=$\frac{1}{2}$×45°=22.5°,
∴∠COD=45°,
∵AC∥DO,
∴∠CAD=∠ADO=22.5°,
∴△ADO是等腰三角形,
△DOE中,∠ADO=22.5°,∠EOD=45°,
∴△ADO和△DOE不相似,
∴線段OD不是DE與DA的比例中項,
∴故⑤錯誤.
綜上所述,只有①③④正確.
故選C.
點評 此題主要考查相似三角形的判定與性質(zhì),圓心角、弧、弦的關(guān)系,圓周角定理,等腰三角形的性質(zhì),三角形內(nèi)角和定理等知識點的靈活運用,此題步驟繁瑣,但相對而言,難易程度適中,很適合學(xué)生的訓(xùn)練是一道典型的題目.
科目:初中數(shù)學(xué) 來源: 題型:解答題
a/m | … | $\frac{1}{2}$ | 1 | $\frac{3}{2}$ | 2 | $\frac{5}{2}$ | 3 | … |
cm 2 | … | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0的絕對值是0 | B. | 0的相反數(shù)是0 | ||
C. | 0與任何數(shù)相加任得這個數(shù) | D. | 0的倒數(shù)是0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{\frac{1}{4}}$ | B. | $\sqrt{(-2)^{2}}$ | C. | -$\sqrt{2}$ | D. | $\sqrt{-\frac{1}{4}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$-1 | C. | 2-$\sqrt{2}$ | D. | $\sqrt{2}$-$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com