19.如圖,△ABC中,∠BAC=90°,AD為BC邊上中線,若AD=$\sqrt{5}$,△ABC周長為6+2$\sqrt{5}$,則△ABC的面積為4.

分析 設AB長為a,AC長為b,根據(jù)AD為直角三角形ABC斜邊BC的中線,可求出BC的長度,即求出a2+b2的值,然后根據(jù)△ABC周長為6+2$\sqrt{5}$,可求出a+b的值,求解即可.

解答 解:設AB長為a,AC長為b,
∵在△ABC中,∠BAC=90°,AD為BC邊上中線且AD=$\sqrt{5}$,
∴BC=2$\sqrt{5}$,
∴a2+b2=(2$\sqrt{5}$)2=20,
又∵△ABC周長為6+2$\sqrt{5}$,
∴a+b=6+2$\sqrt{5}$-2$\sqrt{5}$=6,
∴ab=$\frac{1}{2}$[(a+b)2-(a2+b2)]=$\frac{1}{2}$[36-20]=8.
∴△ABC的面積為:$\frac{1}{2}$ab=$\frac{1}{2}$×8=4.
故答案為:4.

點評 本題考查了二次根式的應用,解答本題的關鍵在于根據(jù)AD為直角三角形ABC斜邊BC的中線,求出BC的長度.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

7.在平面直角坐標系中,直線y=-$\frac{4}{3}$x+4交x軸,y軸分別于點A,點B,將△AOB繞坐標原點逆時針旋轉90°得到△COD,直線CD交直線AB于點E,如圖1:

(1)求:直線CD的函數(shù)關系式;
(2)如圖2,連接OE,過點O作OF⊥OE交直線CD于點F,如圖2,
①求證:∠OEF=45°;
②求:點F的坐標;
(3)若點P是直線DC上一點,點Q是x軸上一點(點Q不與點O重合),當△DPQ和△DOC全等時,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

10.下列寫法正確的是( 。
A.x5B.4m×nC.1$\frac{3}{4}$mD.-$\frac{1}{2}$ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

7.如圖,在?ABCD中,BE:EC=1:2且S△BEF=2,則S△ADF=18.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.在甲處勞動的有58人,在乙處勞動的有34人,現(xiàn)要趕工期,總公司另調40人去支援,使甲處的人數(shù)為乙處人數(shù)的2倍,應分別調往甲處,乙處各多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

4.設A=x2+1,B=-2x+x2,則2B-3A可化簡為( 。
A.4x2+1B.-x2-4x-3C.x2-4x-3D.x2-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.學校舉辦一年一屆的科技文化藝術節(jié)活動,需制作一塊活動展板,請來兩名工人,已知師傅單獨完成需4天,徒弟單獨完成需6天,現(xiàn)由徒弟先做一天,再兩人合作,問:還需幾天可以完成這項工作?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.根據(jù)解答過程填空(寫出推理理由或根據(jù)):
如圖,已知∠DAF=∠F,∠B=∠D,試說明AB∥DC
證明∵∠DAF=∠F(  已知 )
∴AD∥BF內(nèi)錯角相等,兩直線平行
∴∠D=∠DCF兩直線平行,內(nèi)錯角相等
∵∠B=∠D已知
∴∠B=∠DCF ( 等量代換 )
∴AB∥DC同位角相等,兩直線平行.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.分解因式:3ab2-6a2b+3a3

查看答案和解析>>

同步練習冊答案