【題目】某校九年級數(shù)學(xué)興趣小組的同學(xué)進行社會實踐活動時想利用所學(xué)的解直角三角形的知識測量某塔的高度,他們先在點用高米的測角儀測得塔頂的仰角為,然后沿方向前行m到達點,處測得塔頂的仰角為.請根據(jù)他們的測量數(shù)據(jù)求此塔的高.結(jié)果精確到m,參考數(shù)據(jù) ,

【答案】36.1.

【解析】試題分析:首先證明AB=BM=40,在Rt△BCM中,利用勾股定理求出CM即可解決問題;

試題解析:解:由題意:AB=40,CF=1.5∵∠MAC=30°,MBC=60°,∴∠AMB=30°,∴∠AMB=MAB,AB=MB=40RtBCM中,∵∠MCB=90°,MBC=60°∴∠BMC=30°,BC=BM=20,MC==,MC≈34.64,MF=CF+CM=36.14≈36.1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,BAC與∠DCA的平分線相交于點G,GEAC于點E,FAC上的一點,AF=FC,GHCDH.下列說法①AGCG;②∠BAG=CGE;SAFG=SCFG;④若∠EGH∶∠ECH=27,則∠EGH=40°.其中正確的有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.Px軸上的一個動點.

(1)求此拋物線的解析式;

(2)當(dāng)PA+PB的值最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(0,a),B(0,b),C(m,b)(a-4)2+|b+3|=0,SABC=14。

1)求C點的坐標

2)作DEDCy軸于E點,EF為∠AED的平分線,且∠DFE=90o。求證:FD平分∠ADO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,△ADC與△ABC關(guān)于直線AC對稱,AECD垂直交BC的延長線于點E,∠EAF45°,且AFABAE的兩側(cè),EFAF

1)依題意補全圖形.

2)①在AE上找一點P,使點P到點B,點C的距離和最短;

②求證:點DAF,EF的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABO的直徑,CF為⊙O上兩點,且點C為弧BF的中點,過點CAF的垂線,AF的延長線于點E,AB的延長線于點D

1求證DE是⊙O的切線;

2如果半徑的長為3,tanD=AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合里:0,-3.14,-(10),-4,15%,0.3,,10.01001000100001…

非負整數(shù)集合:{ …}

正分數(shù)集合:{ …}

無理數(shù)集合:{ …}

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD的周長為24,∠ABC=60°,以AB為腰在菱形外作底角為45°的等腰ABE,連結(jié)AC,CE,則ACE的面積為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個一次函數(shù)滿足,那么稱這兩個一次函數(shù)為平行一次函數(shù)

如圖,已知函數(shù)的圖象與x軸、y軸分別交于AB兩點,一次函數(shù)平行一次函數(shù)

若函數(shù)的圖象過點,求b的值;

若函數(shù)的圖象與兩坐標軸圍成的三角形和構(gòu)成位似圖形,位似中心為原點,位似比為12,求函數(shù)的表達式.

查看答案和解析>>

同步練習(xí)冊答案