【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)D、M分別在BC、AC上,Rt△BDE、Rt△EFG、Rt△GHI、Rt△IJK、Rt△KMA的斜邊都在AB上,則五個(gè)小直角三角形的周長和為 .
【答案】24
【解析】解:∵∠C=90°,AC=6,BC=8, ∴AB= =10,
根據(jù)平移的性質(zhì)得:DE+FG+HI+JK+AM=AC,BD+EF+GH+IJ+KM=BC,
∴5個(gè)小直角三角形的周長和為:AC+BC+AB=6+8+10=24,
所以答案是:24.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平移的性質(zhì)(①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,D是函數(shù)y= (k>0,x>0)圖象上兩點(diǎn)(點(diǎn)A在點(diǎn)D的左側(cè)),直線AD分別交x,y軸于點(diǎn)E,F(xiàn).AB⊥x軸于點(diǎn)B,CD⊥x軸于點(diǎn)C,連結(jié)AO,BD.若BC=OB+CE,S△AOF+S△CDE=1,則S△ABD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),∠AOE=130°,∠EOF=90°,OP平分∠AOE,OQ平分∠BOF,求∠POQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點(diǎn)E,∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為m的正三角形,D,E,F(xiàn)分別在邊AB,BC,CA上,AE,BF交于點(diǎn)P,BF,CD交于點(diǎn)Q,CD,AE交于點(diǎn)R,若 = = =k(0<k< ).
(1)求∠PQR的度數(shù);
(2)求證:△ARD∽△ABE;
(3)求△PQR與△ABC的面積之比(用含k的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明、小英、小麗和小華的家都在同一條街的同側(cè)居民住宅的一排住宅樓內(nèi)居住,四個(gè)家庭的住址位于同一直線上.小明家到小英家的距離約為480米,小麗家到小英家的距離約為320米,小華家在小明家和小麗家之間線段的中點(diǎn)的位置.
請你通過所學(xué)圖形知識建立數(shù)學(xué)模型,畫出圖形,求出小明家和小華家的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)專營店代理銷售A、B兩種型號手機(jī).手機(jī)的進(jìn)價(jià)、售價(jià)如下表:
型號 | A | B |
進(jìn)價(jià) | 1800元/部 | 1500元/部 |
售價(jià) | 2070元/部 | 1800元/部 |
(1)第一個(gè)月:用54000元購進(jìn)A、B兩種型號的手機(jī),全部售完后獲利9450元,求第一個(gè)月購進(jìn)A、B兩種型號手機(jī)的數(shù)量;
(2)第二個(gè)月:計(jì)劃購進(jìn)A、B兩種型號手機(jī)共34部,且不超出第一個(gè)月購進(jìn)A、B兩種型號的手機(jī)總費(fèi)用,則A型號手機(jī)最多能購多少部?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD⊥BC,EF⊥BC,垂足分別為D、F,∠2+∠3=180°,試說明:∠GDC=∠B.請補(bǔ)充說明過程,并在括號內(nèi)填上相應(yīng)的理由.
解:∵AD⊥BC,EF⊥BC(已知)
∴∠ADB=∠EFB=90° ,
∴EF∥AD( ),
∴ +∠2=180°( ).
又∵∠2+∠3=180°(已知),
∴∠1=∠3( ),
∴AB∥ ( ),
∴∠GDC=∠B( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若P,Q為某個(gè)菱形相鄰的兩個(gè)頂點(diǎn),且該菱形的兩條對角線分別與x軸,y軸平行,則稱該菱形為點(diǎn)P,Q的“相關(guān)菱形”.圖1為點(diǎn)P,Q的“相關(guān)菱形”的一個(gè)示意圖.
已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B的坐標(biāo)為(b,0),
(1)若b=3,則R(﹣1,0),S(5,4),T(6,4)中能夠成為點(diǎn)A,B的“相關(guān)菱形”頂點(diǎn)的是;
(2)若點(diǎn)A,B的“相關(guān)菱形”為正方形,求b的值;
(3)⊙B的半徑為 ,點(diǎn)C的坐標(biāo)為(2,4).若⊙B上存在點(diǎn)M,在線段AC上存在點(diǎn)N,使點(diǎn)M,N的“相關(guān)菱形”為正方形,請直接寫出b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com