【題目】如圖,在△ABC外分別以AB,AC為邊作兩個大小不同的等腰直角三角形ABD和等腰直角三角形ACE,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.連結(jié)DCBE交于F點.
(1)請你找出一對全等的三角形,并加以證明;
(2)直線DC、BE是否互相垂直,請說明理由;
(3)求證:∠DFA=∠EFA.
科目:初中數(shù)學 來源: 題型:
【題目】意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的長度構(gòu)造一組正方形(如下圖),再分別依次從左到右取2個,3個,4個,5個正方形拼成如下長方形并記為①,②,③,④,相應長方形的周長如下表所示:
若按此規(guī)律繼續(xù)作長方形,則序號為⑧的長方形周長是( )
A. 288 B. 178 C. 28 D. 110
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因為_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級開展“光盤行動”宣傳活動,各班級參加該活動的人數(shù)統(tǒng)計結(jié)果如下表,對于這組統(tǒng)計數(shù)據(jù),下列說法中正確的是( )
班級 | 1班 | 2班 | 3班 | 4班 | 5班 | 6班 |
人數(shù) | 52 | 60 | 62 | 54 | 58 | 62 |
A.平均數(shù)是58
B.中位數(shù)是58
C.極差是40
D.眾數(shù)是60
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果市場將120噸水果運往各地商家,現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 400 | 500 | 600 |
(1)若全部水果都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)約運費,市場可以調(diào)用甲、乙、丙三種車型參與運送(每種車型至少1輛),已知它們的總輛數(shù)為16輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC 三個頂點的坐標分別為 A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC 向左平移 5 個單位長度后得到的△A1B1C1;
(2)在 x 軸上求作一點 P,使△PAB 的周長最小,請畫出△PAB,并直接寫出 P 的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com