28. (2008年江蘇省南通市)已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線上的動(dòng)點(diǎn).過(guò)點(diǎn)B作BD∥y軸于點(diǎn)D.過(guò)N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.
(1)若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值.
(2)若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且MA=pMP,MB=qMQ,求p-q的值.
27. (2008年山東省青島市)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥BC?
(2)設(shè)△AQP的面積為y(),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時(shí)刻t,使四邊形PQP′C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng);若不存在,說(shuō)明理由.
26. (2008年陜西省)某縣社會(huì)主義新農(nóng)村建設(shè)辦公室,為了解決該縣甲、乙兩村和一所中學(xué)長(zhǎng)期存在的飲水困難問(wèn)題,想在這三個(gè)地方的其中一處建一所供水站.由供水站直接鋪設(shè)管道到另外兩處.
如圖,甲,乙兩村坐落在夾角為的兩條公路的段和段(村子和公路的寬均不計(jì)),點(diǎn)表示這所中學(xué).點(diǎn)在點(diǎn)的北偏西的3km處,點(diǎn)在點(diǎn)的正西方向,點(diǎn)在點(diǎn)的南偏西的km處.
為使供水站鋪設(shè)到另兩處的管道長(zhǎng)度之和最短,現(xiàn)有如下三種方案:
方案一:供水站建在點(diǎn)處,請(qǐng)你求出鋪設(shè)到甲村某處和乙村某處的管道長(zhǎng)度之和的最小值;
方案二:供水站建在乙村(線段某處),甲村要求管道建設(shè)到處,請(qǐng)你在圖①中,畫出鋪設(shè)到點(diǎn)和點(diǎn)處的管道長(zhǎng)度之和最小的線路圖,并求其最小值;
方案三:供水站建在甲村(線段某處),請(qǐng)你在圖②中,畫出鋪設(shè)到乙村某處和點(diǎn)處的管道長(zhǎng)度之和最小的線路圖,并求其最小值.
綜上,你認(rèn)為把供水站建在何處,所需鋪設(shè)的管道最短?
25. (2008年上海市)已知,,(如圖13).是射線上的動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),是線段的中點(diǎn).
(1)設(shè),的面積為,求關(guān)于的函數(shù)解析式,并寫出函數(shù)的定義域;
(2)如果以線段為直徑的圓與以線段為直徑的圓外切,求線段的長(zhǎng);
(3)聯(lián)結(jié),交線段于點(diǎn),如果以為頂點(diǎn)的三角形與相似,求線段的長(zhǎng).
24.(2008年大慶市)
如圖①,四邊形和都是正方形,它們的邊長(zhǎng)分別為(),且點(diǎn)在上(以下問(wèn)題的結(jié)果均可用的代數(shù)式表示).
(1)求;
(2)把正方形繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)45°得圖②,求圖②中的;
(3)把正方形繞點(diǎn)旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,是否存在最大值、最小值?如果存在,直接寫出最大值、最小值;如果不存在,請(qǐng)說(shuō)明理由.
.
23.(天津市2008年)已知拋物線,
(Ⅰ)若,,求該拋物線與軸公共點(diǎn)的坐標(biāo);
(Ⅱ)若,且當(dāng)時(shí),拋物線與軸有且只有一個(gè)公共點(diǎn),求的取值范圍;
(Ⅲ)若,且時(shí),對(duì)應(yīng)的;時(shí),對(duì)應(yīng)的,試判斷當(dāng)時(shí),拋物線與軸是否有公共點(diǎn)?若有,請(qǐng)證明你的結(jié)論;若沒(méi)有,闡述理由.
22.(2008年四川省宜賓市)已知:如圖,拋物線y=-x2+bx+c與x軸、y軸分別相交于點(diǎn)A(-1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D.
(1)求該拋物線的解析式;
(2)若該拋物線與x軸的另一個(gè)交點(diǎn)為E. 求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似?如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說(shuō)明理由.
(注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為)
21.(2008年樂(lè)山市)在平面直角坐標(biāo)系中△ABC的邊AB在x軸上,且OA>OB,以AB為直徑的圓過(guò)點(diǎn)C若C的坐標(biāo)為(0,2),AB=5, A,B兩點(diǎn)的橫坐標(biāo)XA,XB是關(guān)于X的方程的兩根:
(1) 求m,n的值
(2) 若∠ACB的平分線所在的直線交x軸于點(diǎn)D,試求直線對(duì)應(yīng)的一次函數(shù)的解析式
(3) 過(guò)點(diǎn)D任作一直線分別交射線CA,CB(點(diǎn)C除外)于點(diǎn)M,N,則的值是否為定值,若是,求出定值,若不是,請(qǐng)說(shuō)明理由
20.(2008年成都市)如圖,在平面直角坐標(biāo)系xOy中,△OAB的頂點(diǎn)A的坐標(biāo)為(10,0),頂點(diǎn)B在第一象限內(nèi),且=3,sin∠OAB=.
(1)若點(diǎn)C是點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn),求經(jīng)過(guò)O、C、A三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)在(1)中,拋物線上是否存在一點(diǎn)P,使以P、O、C、A為頂點(diǎn)的四邊形為梯形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若將點(diǎn)O、點(diǎn)A分別變換為點(diǎn)Q( -2k ,0)、點(diǎn)R(5k,0)(k>1的常數(shù)),設(shè)過(guò)Q、R兩點(diǎn),且以QR的垂直平分線為對(duì)稱軸的拋物線與y軸的交點(diǎn)為N,其頂點(diǎn)為M,記△QNM的面積為,△QNR的面積,求∶的值.
19.(2008年四川省巴中市) 已知:如圖14,拋物線與軸交于點(diǎn),點(diǎn),與直線相交于點(diǎn),點(diǎn),直線與軸交于點(diǎn).
(1)寫出直線的解析式.
(2)求的面積.
(3)若點(diǎn)在線段上以每秒1個(gè)單位長(zhǎng)度的速度從向運(yùn)動(dòng)(不與重合),同時(shí),點(diǎn)在射線上以每秒2個(gè)單位長(zhǎng)度的速度從向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)寫出的面積與的函數(shù)關(guān)系式,并求出點(diǎn)運(yùn)動(dòng)多少時(shí)間時(shí),的面積最大,最大面積是多少?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com