當(dāng)時.方程無圖形. 查看更多

 

題目列表(包括答案和解析)

給出如下命題:

  ①直線是函數(shù)的一條對稱軸;

  ②函數(shù)關(guān)于點(diǎn)(3,0)對稱,滿足,且當(dāng)時,函數(shù)為增函數(shù),則上為減函數(shù);

  ③命題“對任意,方程有實(shí)數(shù)解”的否定形式為“存在,方程無實(shí)數(shù)解”;

  ④

  以上命題中正確的               .

 

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時,,則。

依題意得:,即    解得

第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時,,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,。∴上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增。∴最大值為。

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

對于函數(shù),若存在x0∈R,使方程成立,則稱x0的不動點(diǎn),已知函數(shù)a≠0).

(1)當(dāng)時,求函數(shù)的不動點(diǎn);

(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;

 

查看答案和解析>>

二次方程ax2+bx+c=0的系數(shù)a、b、c分別是雙曲線的半實(shí)軸長、半虛軸長與半焦距.若方程無實(shí)根,則離心率e的取值范圍是_____________.

查看答案和解析>>

給出如下命題:
①直線是函數(shù)的一條對稱軸;
②函數(shù)關(guān)于點(diǎn)(3,0)對稱,滿足,且當(dāng)時,函數(shù)為增函數(shù),則上為減函數(shù);
③命題“對任意,方程有實(shí)數(shù)解”的否定形式為“存在,方程無實(shí)數(shù)解”;

以上命題中正確的              .

查看答案和解析>>


同步練習(xí)冊答案