在上單調遞減 ---------------------------9分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).(

(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

時,單調遞減,在單調遞增,當,即時,

第二問中,,則,

單調遞增,,單調遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,,

由(1)可知,的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

解:(1)時,單調遞減,在單調遞增,當,即時,,

                 …………4分

(2),則,

單調遞增,,,單調遞減,,因為對一切恒成立,                                             …………9分

(3)問題等價于證明,

由(1)可知的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

已知函數(shù)f(x)=
1
3
ax3+
1
2
bx2+cx.若方程f(x)=0有三個根分別為x1、x2、x2,且x1+x2+x3=-3,x1x2=-9.
(1)求f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,1)上單調遞減,且函數(shù)f(x)的圖象與直線y=1有且僅有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

(本小題滿分9分)以下是用二分法求方程的一個近似解(精確度為0.1)的不完整的過程,請補充完整。

區(qū)間

中點

符號

區(qū)間長度

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

解:設函數(shù),其圖象在上是連續(xù)不斷的,且上是單調遞______(增或減)。先求_______,______,____________。

所以在區(qū)間____________內存在零點,再填上表:

下結論:_______________________________。

(可參考條件:,;符號填+、-)

 

查看答案和解析>>

(本小題滿分9分)以下是用二分法求方程的一個近似解(精確度為0.1)的不完整的過程,請補充完整。
區(qū)間
中點
符號
區(qū)間長度
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
解:設函數(shù),其圖象在上是連續(xù)不斷的,且上是單調遞______(增或減)。先求_______,______,____________。
所以在區(qū)間____________內存在零點,再填上表:
下結論:_______________________________。
(可參考條件:;符號填+、-)

查看答案和解析>>


同步練習冊答案