題目列表(包括答案和解析)
已知函數(shù).()
(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調遞增,
則在區(qū)間上恒成立. …………3分
即,而當時,,故. …………5分
所以. …………6分
(2)令,定義域為.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點,,
當,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當,即時,同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當時,函數(shù)的圖象恒在直線下方.
已知
(1)求函數(shù)在上的最小值
(2)對一切的恒成立,求實數(shù)a的取值范圍
(3)證明對一切,都有成立
【解析】第一問中利用
當時,在單調遞減,在單調遞增,當,即時,,
第二問中,,則設,
則,單調遞增,,,單調遞減,,因為對一切,恒成立,
第三問中問題等價于證明,,
由(1)可知,的最小值為,當且僅當x=時取得
設,,則,易得。當且僅當x=1時取得.從而對一切,都有成立
解:(1)當時,在單調遞減,在單調遞增,當,即時,,
…………4分
(2),則設,
則,單調遞增,,,單調遞減,,因為對一切,恒成立, …………9分
(3)問題等價于證明,,
由(1)可知,的最小值為,當且僅當x=時取得
設,,則,易得。當且僅當x=1時取得.從而對一切,都有成立
1 |
3 |
1 |
2 |
(本小題滿分9分)以下是用二分法求方程的一個近似解(精確度為0.1)的不完整的過程,請補充完整。
區(qū)間 |
中點 |
符號 |
區(qū)間長度 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
解:設函數(shù),其圖象在上是連續(xù)不斷的,且在上是單調遞______(增或減)。先求_______,______,____________。
所以在區(qū)間____________內存在零點,再填上表:
下結論:_______________________________。
(可參考條件:,;符號填+、-)
區(qū)間 | 中點 | 符號 | 區(qū)間長度 |
| | | |
| | | |
| | | |
| | | |
| | | |
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com