題目列表(包括答案和解析)
| ||
3 |
AF |
FB |
FM |
AB |
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)F是橢圓在y軸正半軸上的一個(gè)焦點(diǎn),點(diǎn)A,B是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,過(guò)點(diǎn)A,B分別作拋物線的兩條切線,設(shè)兩切線的交點(diǎn)為M,試推斷是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由.
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為.
(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為.
(I)求橢圓方程;
(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為.
(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
一、選擇題
A卷:BACDB DCABD BA
B卷:BDACD BDCAB BA
二、填空題
13.15
14.210
15.
16.①④
三、解答題:
17.文 解:
(Ⅰ)3人各自進(jìn)行1次實(shí)驗(yàn)都沒(méi)有成功的概率
…………………………6分
(Ⅱ)甲獨(dú)立進(jìn)行3次實(shí)驗(yàn)至少有兩次成功的概率
…………………………12分
17.理 解:(注:考試中計(jì)算此題可以使用分?jǐn)?shù),以下的解答用的是小數(shù))
(Ⅰ)同文(Ⅰ)
(Ⅱ)的概率分別為
隨機(jī)變量的概率分布為
0
1
2
3
P
0.216
0.432
0.288
0.064
………………8分
的數(shù)學(xué)期望為E=0×0.216+1×0.432+2×0.288+3×0.064=1.2.…………10分
(或利用E=np=3×0.4=1.2)
的方差為
D=(0-1.2)2×0.216+(1-1.2)2×0.432+(2-1.2)2×0.288+(3-1.2)2×0.064
=0.72.…………………………12分
(或利用D=npq=3×0.4×0.6=0.72)
18.文 解:
(Ⅰ)設(shè)數(shù)列
所以……………………3分
所以…………………………6分
(Ⅱ)………………9分
………………12分
18.理 解:
(Ⅰ)
…………4分
所以,的最小正周期,最小值為-2.…………………………6分
(Ⅱ)列表:
x
0
2
0
-2
0
|