已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

(1)(2)

解析試題分析:(1),
所以,所求橢圓方程為 
(2)設(shè)
由題意可知直線AB的斜率存在,設(shè)過A,B的直線方程為
則由  得
由M分有向線段所成的比為2,得,……8分
,  
得 
解得,  
所以,
考點(diǎn):橢圓方程與性質(zhì)及直線與橢圓相交問題
點(diǎn)評(píng):直線與圓錐曲線相交時(shí),常聯(lián)立方程組,整理為關(guān)于x的二次方程,利用韋達(dá)定理找到根與系數(shù)的關(guān)系,通過設(shè)而不求的方法轉(zhuǎn)化所求問題,題目中的向量關(guān)系常轉(zhuǎn)化為坐標(biāo)表示,這樣即可與交點(diǎn)A,B坐標(biāo)發(fā)生聯(lián)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,直線過點(diǎn),,且與橢圓相切于點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、,使得?若存在,試求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,已知點(diǎn)P,曲線C的參數(shù)方程為φ為參數(shù))。以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)判斷點(diǎn)P與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線l與直線C的兩個(gè)交點(diǎn)為A、B,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線與拋物線交于兩點(diǎn).
(1)求線段的長(zhǎng);(2)若拋物線的焦點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

圓C的圓心在y軸上,且與兩直線l1;l2均相切.
(I)求圓C的方程;
(II)過拋物線上一點(diǎn)M,作圓C的一條切線ME,切點(diǎn)為E,且的最小值為4,求此拋物線準(zhǔn)線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,已知橢圓上的任意一點(diǎn),滿足,過作垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3.

(1)求橢圓的方程;
(2)若過的直線交橢圓于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為
(1)求曲線C的普通方程;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線L的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點(diǎn),與曲線相切于點(diǎn),記點(diǎn)的橫坐標(biāo)為,其中

(1)當(dāng)時(shí),求的值和點(diǎn)的坐標(biāo);
(2)當(dāng)實(shí)數(shù)取何值時(shí),?并求出此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分為12分)
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為
(I)求橢圓方程;
(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案