已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)點(diǎn)F是橢圓在y軸正半軸上的一個(gè)焦點(diǎn),點(diǎn)A,B是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,過點(diǎn)A,B分別作拋物線的兩條切線,設(shè)兩切線的交點(diǎn)為M,試推斷是否為定值?若是,求出這個(gè)定值;若不是,說明理由.

(Ⅰ)(Ⅱ)為定值0.


解析:

(Ⅰ)設(shè)橢圓方程為(ab>0).       

因?yàn)?img width=49 height=45 src="http://thumb.zyjl.cn/pic1/1899/sx/91/34091.gif" >,得.又,則.

故橢圓的標(biāo)準(zhǔn)方程是.                           (5分)

(Ⅱ)由橢圓方程知,c=1,所以焦點(diǎn)F(0,1),設(shè)點(diǎn)A(x1,y1),B(x2,y2).

,得(-x1,1-y1)=λ(x2,y2-1),所以-x1λx2,1-y1λ(y2-1). (7分)

于是.因?yàn)?img width=59 height=25 src="http://thumb.zyjl.cn/pic1/1899/sx/98/34098.gif" >,,則y1λ2y2.

聯(lián)立y1λ2y2和1-y1λ(y2-1),得y1λ,y2=.              (8分)

因?yàn)閽佄锞方程為yx2,求導(dǎo)得y′=x.設(shè)過拋物線上的點(diǎn)A、B的切線分別為l1,l2,則

直線l1的方程是yx1(xx1)+y1,即yx1xx12.      (9分)

直線l2的方程是yx2(xx2)+y2,即yx2xx22.         (10分)

聯(lián)立l1l2的方程解得交點(diǎn)M的坐標(biāo)為.         (11分)

因?yàn)?i>x1x2=-λx22=-4λy2=-4. 所以點(diǎn)M.              (12分)

于是,(x2x1,y2y1).

所以=(x22x12)-2(x22x12)=0.

為定值0.        (13分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓中心在原點(diǎn),F(xiàn)是焦點(diǎn),A為頂點(diǎn),準(zhǔn)線l交x軸于點(diǎn)B,點(diǎn)P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值為橢圓的離心率的有(  )
A、1個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,右焦點(diǎn)到短軸端點(diǎn)的距離為2,到右頂點(diǎn)的距離為1,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
2
2
,點(diǎn)F1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),過右焦點(diǎn)F2且垂直于長軸的弦長為
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的左焦點(diǎn)F1作直線l,交橢圓于P,Q兩點(diǎn),若
F2P
F2Q
=2
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸,長軸長為短軸長的3倍,且過點(diǎn)P(3,2),求此橢圓的方程;
(2)求與雙曲線
x2
5
-
y2
3
=1
有公共漸近線,且焦距為8的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓中心在原點(diǎn),F(xiàn)是焦點(diǎn),A為頂點(diǎn),準(zhǔn)線l交x軸于點(diǎn)B,點(diǎn)P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則橢圓的離心率是①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中正確的是
①②③④⑤
①②③④⑤

查看答案和解析>>

同步練習(xí)冊答案