14.對定義(的單調(diào)減函數(shù)使得: 查看更多

 

題目列表(包括答案和解析)

定義在正實數(shù)集上的函數(shù)f(x)滿足下列條件:
①存在常數(shù)a(0<a<1),使得f(a)=1;②對任意實數(shù)m,當x∈R+時,有f(xm)=mf(x).
(1)求證:對于任意正數(shù)x,y,f(xy)=f(x)+f(y);
(2)證明:f(x)在正實數(shù)集上單調(diào)遞減;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

定義在正實數(shù)集上的函數(shù)f(x)滿足下列條件:
①存在常數(shù)a(0<a<1),使得f(a)=1;②對任意實數(shù)m,當x∈R+時,有f(xm)=mf(x).
(1)求證:對于任意正數(shù)x,y,f(xy)=f(x)+f(y);
(2)證明:f(x)在正實數(shù)集上單調(diào)遞減;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

定義在正實數(shù)集上的函數(shù)f(x)滿足下列條件:
①存在常數(shù)a(0<a<1),使得f(a)=1;②對任意實數(shù)m,當x∈R+時,有f(xm)=mf(x).
(1)求證:對于任意正數(shù)x,y,f(xy)=f(x)+f(y);
(2)證明:f(x)在正實數(shù)集上單調(diào)遞減;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

定義在正實數(shù)集上的函數(shù)f(x)滿足下列條件:
①存在常數(shù)a(0<a<1),使得f(a)=1;②對任意實數(shù)m,當x∈R+時,有f(xm)=mf(x).
(1)求證:對于任意正數(shù)x,y,f(xy)=f(x)+f(y);
(2)證明:f(x)在正實數(shù)集上單調(diào)遞減;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=ax2-2
4+2b-b2
•x
,g(x)=-
1-(x-a)2
(a, b∈R)

(1)當b=0時,若f(x)在(-∞,2]上單調(diào)遞減,求a的取值范圍;
(2)求滿足下列條件的所有整數(shù)對(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)對滿足(II)中的條件的整數(shù)對(a,b),試構造一個定義在D=x|x∈R且x≠2k,k∈Z上的函數(shù)h(x),使h(x+2)=h(x),且當x∈(-2,0)時,h(x)=f(x).

查看答案和解析>>


同步練習冊答案