如圖.已知在中..BC=CD=1.平面BCD..E是AB的中點. (1)求直線BD和CE所成的角, (2)求點C到平面ABD的距離, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.點A、D分別是RB、RC的中點,現(xiàn)將△RAD沿著邊AD折起到△PAD位置,使PA⊥AB,連接PB、PC.
(1)求證:PB⊥BC;
(2)在線段PB上找一點E,使AE∥平面PCD;
(3)求二面角A-CD-P的余弦值.

查看答案和解析>>

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,AB=1,BC=2,PA=2,E、F分別是AB、PC的中點.
(1)求證:EF∥平面PAD;
(2)求證:CD⊥EF
(3)求EF與平面ABCD所成的角的大。

查看答案和解析>>

如圖,已知正四面體ABCD的棱長為3cm.
(1)求證:AD⊥BC;
(2)已知點E是CD的中點,點P在△ABC的內部及邊界上運動,且滿足EP∥平面ABD,試求點P的軌跡;
(3)有一個小蟲從點A開始按以下規(guī)則前進:在每一個頂點處等可能地選擇通過這個頂點的三條棱之一,并且沿著這條棱爬到盡頭,當它爬了12cm之后,求恰好回到A點的概率.

查看答案和解析>>

如圖,已知正四面體ABCD的棱長為3cm.
(1)求證:AD⊥BC;
(2)已知點E是CD的中點,點P在△ABC的內部及邊界上運動,且滿足EP平面ABD,試求點P的軌跡;
(3)有一個小蟲從點A開始按以下規(guī)則前進:在每一個頂點處等可能地選擇通過這個頂點的三條棱之一,并且沿著這條棱爬到盡頭,當它爬了12cm之后,求恰好回到A點的概率.
精英家教網(wǎng)

查看答案和解析>>

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,AB=1,BC=2,PA=2,E、F分別是AB、PC的中點.
(1)求證:EF∥平面PAD;
(2)求證:CD⊥EF
(3)求EF與平面ABCD所成的角的大。

查看答案和解析>>

 

一 、選擇題

1.C.  2.A.  3.A.  4.A.  5.A. 6.C.  7.A.  8.A.  9.C.  10.D.  11.C.12.D.

一、                                                              填空題

13.. 14.2. 15.16.  16.13.

三、解答題

17.(理科) (1)由(1+tanA)(1+tanB)=2,得

tanA+tanB=1-tanAtanB,

即tan(A+B)=1.              

∵A、B為△ABC內角, ∴A+B=.  則 C=(定值).

(2)已知△ABC內接于單位圓, ∴△ABC外接圓半徑R=1.

∴由正弦定理得:,.

則△ABC面積S=

                  =

                  =

∵  0<B<, ∴.

    故 當時,△ABC面積S的最大值為.   

(文科)。1),

,,∴

∴ 向量的夾角的大小為

(2)

為鄰邊的平行四邊形的面積,

據(jù)此猜想,的幾何意義是以、為鄰邊的平行四邊形的面積.

18. (1)學生甲恰好抽到3道歷史題,2道地理題的概率為

       (2)若學生甲被評為良好,則他應答對5道題或4道題

       而答對4道題包括兩種情況:①答對3道歷史題和1道地理(錯一道地理題);②答對2道歷史題和2道地理題(錯一道歷史題)。

       設答對5道記作事件A;

       答對3道歷史題,1道地理題記作事件B;

       答對2道歷史題,2道地理題,記作事件C;

       ,

          ,

         

       ∴甲被評為良好的概率為:

      

19.  (1)延長AC到G,使CG=AC,連結BG、DG,E是AB中點,

    故直線BG和BD所成的銳角(或直角)就是CE和BD所成的角.

   

   (2)設C到平面ABD的距離為h

   

   

20. (1)

(2) 由(1)知:,故是增函數(shù)

對于一切恒成立.

由定理知:存在

由(1)知:

  

的一般性知:

21. (1)以中點為原點,所在直線為軸,建立平面直角坐標系,則

 

 

 

 

 

 

 

 

 

,由,此即點的軌跡方程.

   (2)將向右平移一個單位,再向下平移一個單位后,得到圓,

依題意有

   (3)不妨設點的上方,并設,則,

所以,由于,

22.(理科)⑴ ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=a-x

∵f(x)是奇函數(shù),g(x)是偶函數(shù),∴-f(x)+g(x)=a-x

∴f(x)=,g(x)=

是R上的減函數(shù),

∴y=f -1(x)也是R上的減函數(shù). 

 

 n>2,上是增函數(shù).是減函數(shù);

上是減函數(shù).是增函數(shù).

(文科)。1)∵函數(shù)時取得極值,∴-1,3是方程的兩根,

(2),當x變化時,有下表

x

(-∞,-1)

-1

(-1,3)

3

(3,+∞)

f(x)

+

0

-

0

+

f(x)

Max

c+5

Min

c-27

時f(x)的最大值為c+54.

要使f(x)<2|c|恒成立,只要c+54<2|c|即可.

當c≥0時c+54<2c,  ∴c>54.

當c<0時c+54<-2c,∴c<-18.

∴c∈(-∞,-18)∪(54,+∞)


同步練習冊答案