2.若A 查看更多

 

題目列表(包括答案和解析)

若a=(1,x),b=(2x,3),那么
2ab
|a|2+|b|2
的取值范圍是(  )
A、(-∞,
2
2
]
B、[0,
2
2
]
C、[-
2
2
2
2
]
D、[
2
2
,+∞)

查看答案和解析>>

若A(1,-2,1),B(4,2,3),C(6,-1,4),則△ABC的形狀是( 。
A、不等邊銳角三角形B、直角三角形C、鈍角三角形D、等邊三角形

查看答案和解析>>

a
=(x1,y1),
b
=(x2,y2),則
x1
x2
=
y1
y2
a
b
的( 。
A、充要條件
B、充分非必要條件
C、必要非充分條件
D、既非充分又非必要條件

查看答案和解析>>

a
=(2,3),
b
=(-4,7),則
a
b
方向上的投影為(  )
A、
3
B、
13
5
C、
65
5
D、
65

查看答案和解析>>

a
=(x,1),
b
=(2,3x),且x≥0.那么
a
b
|
a
|
2
+|
b
|
2
的取值范圍是( 。
A、(-∞,2
2
B、[0,
2
4
]
C、[-
2
4
,
2
4
]
D、[2
2
,+∞)

查看答案和解析>>

一、       選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空題

題號

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答題:本大題共6小題,共80分,解答應寫出文字說明、證明過程或演算步驟.

15.解:(Ⅰ),不等式的解為

(Ⅱ)由(Ⅰ)可知,

16、解:

 

  。↖)函數的最小正周期是        ……………………………7分

  。↖I)∴   ∴   

     ∴               

    所以的值域為:                 …………12分

17、解:(1)因為,成等差數列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若、是兩兩不相等的正數,且、依次成等差數列,設a=b-d,c=b+d,(d不為0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因為(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定義域關于原點對稱

為奇函數,則  ∴a=0

(Ⅱ)∴在上單調遞增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范圍為

19. 解:(Ⅰ)設的公差為,則:,

,,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)當時,,由,得.     …………………5分

時,,,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以為首項,為公比的等比數列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)設函數

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常數k=8.

(Ⅲ)由(Ⅱ)知 

可知數列為首項,8為公比的等比數列

即以為首項,8為公比的等比數列. 則 

 


同步練習冊答案