分析 (1)當木塊和木板間的靜摩擦力達到最大靜摩擦力時,向右運動的加速度最大;
(2)當木塊與木板之間的摩擦力達到最大靜摩擦力時,兩者發(fā)生相對滑動,隔離對木塊和木板分析,運用牛頓第二定律求出水平拉力的最小值.
(3)薄木板在被抽出的過程中,滑塊先做勻加速直線運動后做勻減速直線運動,根據運動學規(guī)律求解出時間;再求解出薄木板的加速度,最后對薄木板受力分析,根據牛頓第二定律求解拉力大小.
解答 解:(1)小木塊與薄木板間的摩擦力達到最大靜摩擦力時,向右運動的加速度最大,根據牛頓第二定律有
$μmg=m{a}_{m}^{\;}$
解得:${a}_{m}^{\;}=μg$
(2)能抽出木板,滑塊與木板應相對滑動,當滑塊達到隨板運動的最大加速度時,拉力最。
對小木塊,有:μmg=ma ①
對木板,有:Fmin-μ•2mg-μmg=ma②
代入數據,聯立兩式解得Fmin=4μmg
(3)設小木塊沒有離開薄木板的過程,時間為t,小木塊的加速度大小為a1,移動的距離為x1,薄木板被抽出后,小木塊在桌面上做勻減速直線運動,
設加速度大小為a2,移動的距離為x2,有:
μmg=ma1
μmg=ma2
即有:a1=a2=μg
根據運動學規(guī)律有:x1=x2
所以:${x}_{1}^{\;}=\frac{1}{2}μg{t}_{\;}^{2}$
${x}_{2}^{\;}=\frac{1}{2}μg{t}_{\;}^{2}$,
根據題意有:x1+x2=$\frac{L}{2}$
$t=\frac{L}{μg}$
設小木塊沒有離開薄木板的過程中,薄木板的加速度為a,移動的距離為x,有x=$\frac{1}{2}a{t}_{\;}^{2}$
根據題意有:x=x1+$\frac{1}{2}L$
聯立解得:a=3ug
根據牛頓第二定律:F-3μmg=ma
得:F=6μmg
答:(1)小木塊相對薄木板靜止時,向右運動的最大加速度μg;
(2)要將薄木板從木塊下抽出,拉力至少4μmg
(3)若能將薄木板抽出,并且最后小木塊恰好停在桌面邊上,沒從桌面上掉下.假設薄木板在被抽出的過程中始終保持水平,且在豎直向上的壓力全部作用在水平桌面上,水平外力F的大小6μmg.
點評 本題為較復雜的牛頓第二定律的應用,涉及到多物體多過程,在解題時一定要注意正確分析物理過程,對每一過程做好受力分析,才能根據動力學規(guī)律準確求解.
科目:高中物理 來源: 題型:計算題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | $\frac{1}{2}$gt0≤v0<gt0,h=$\frac{1}{2}$gt${\;}_{0}^{2}$($\frac{{v}_{0}-g{t}_{0}}{{v}_{0}-\frac{1}{2}g{t}_{0}}$)2 | |
B. | v0≠gt0,h=$\frac{1}{2}$gt${\;}_{0}^{2}$($\frac{{v}_{0}-\frac{1}{2}g{t}_{0}}{{v}_{0}-g{t}_{0}}$)2 | |
C. | $\frac{1}{2}$gt0≤v0<gt0,h=$\frac{1}{2}$gt${\;}_{0}^{2}$($\frac{{v}_{0}-\frac{1}{2}g{t}_{0}}{{v}_{0}-g{t}_{0}}$)2 | |
D. | v0≠$\frac{1}{2}$gt0,h=$\frac{1}{2}$gt${\;}_{0}^{2}$($\frac{{v}_{0}-g{t}_{0}}{{v}_{0}-\frac{1}{2}g{t}_{0}}$)2 |
查看答案和解析>>
科目:高中物理 來源: 題型:填空題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 電壓表的示數為18V | |
B. | 電流表的示數為1.7A | |
C. | 穿過線圈磁通量的最大值為8.1×10-4Wb | |
D. | 若僅將線圈的轉速提高一倍,則線圈電動勢的表達式為e=36$\sqrt{2}$sin100πt(V) |
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 在t=0時,線圈中的磁通量為0 | |
B. | 該交流發(fā)電機線圈的轉速為25r/s | |
C. | 若加在標有“10V 20W”的燈泡的兩端,燈泡能正常發(fā)光 | |
D. | 若線圈的轉速加倍,則交變電壓的最大值、有效值增大一倍而頻率不變 |
查看答案和解析>>
科目:高中物理 來源: 題型:實驗題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com