相關習題
 0  266040  266048  266054  266058  266064  266066  266070  266076  266078  266084  266090  266094  266096  266100  266106  266108  266114  266118  266120  266124  266126  266130  266132  266134  266135  266136  266138  266139  266140  266142  266144  266148  266150  266154  266156  266160  266166  266168  266174  266178  266180  266184  266190  266196  266198  266204  266208  266210  266216  266220  266226  266234  266669 

科目: 來源: 題型:

【題目】fx)=xexax22ax

(Ⅰ)若yfx)的圖象在x=﹣1處的切線經過坐標原點,求a的值;

(Ⅱ)若fx)存在極大值,且極大值小于0,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓Ey21m1)的離心率為,過點P1,0)的直線與橢圓E交于A,B不同的兩點,直線AA0垂直于直線x4,垂足為A0

(Ⅰ)求m的值;

(Ⅱ)求證:直線A0B恒過定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】某地區(qū)人民法院每年要審理大量案件,去年審理的四類案件情況如表所示:

編號

項目

收案(件)

結案(件)

判決(件)

1

刑事案件

2400

2400

2400

2

婚姻家庭、繼承糾紛案件

3000

2900

1200

3

權屬、侵權糾紛案件

4100

4000

2000

4

合同糾紛案件

14000

13000

n

其中結案包括:法庭調解案件、撤訴案件、判決案件等.根據以上數據,回答下列問題.

(Ⅰ)在編號為1、23的收案案件中隨機取1件,求該件是結案案件的概率;

(Ⅱ)在編號為2的結案案件中隨機取1件,求該件是判決案件的概率;

(Ⅲ)在編號為1、2、3的三類案件中,判決案件數的平均數為,方差為S12,如果表中n,表中全部(4類)案件的判決案件數的方差為S22,試判斷S12S22的大小關系,并寫出你的結論(結論不要求證明).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數,(其中),其部分圖像如圖所示.

1)求函數的解析式;

2)已知橫坐標分別為、的三點都在函數的圖像上,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.

(Ⅰ)求證:AC⊥平面BDEF;

(Ⅱ)求證:FC∥平面EAD;

(Ⅲ)求二面角A﹣FC﹣B的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,對于⊙Ox2+y21來說,P是坐標系內任意一點,點P到⊙O的距離SP的定義如下:若PO重合,SPr;若P不與O重合,射線OP與⊙O的交點為ASPAP的長度(如圖).

1)直線2x+2y+10在圓內部分的點到⊙O的最長距離為_____;

2)若線段MN上存在點T,使得:

①點T在⊙O內;

P∈線段MN,都有STSP成立.則線段MN的最大長度為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系xOy下,曲線C1的參數方程為 為參數),曲線C1在變換T的作用下變成曲線C2

1)求曲線C2的普通方程;

2)若m>1,求曲線C2與曲線C3y=m|x|-m的公共點的個數.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數有兩個零點.

1)求的取值范圍;

2)記的極值點為,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,圓,點,過的直線與圓交于點,過做直線平行于點

1)求點的軌跡的方程;

2)過的直線與交于、兩點,若線段的中點為,且,求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產品養(yǎng)殖業(yè)具有得天獨厚的優(yōu)勢.根據養(yǎng)殖規(guī)模與以往的養(yǎng)殖經驗,某海鮮商家的海產品每只質量(克)在正常環(huán)境下服從正態(tài)分布

1)隨機購買10只該商家的海產品,求至少買到一只質量小于265克該海產品的概率;

22020年該商家考慮增加先進養(yǎng)殖技術投入,該商家欲預測先進養(yǎng)殖技術投入為49千元時的年收益增量.現用以往的先進養(yǎng)殖技術投入(千元)與年收益增量(千元).的數據繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近,且,其中.根據所給的統(tǒng)計量,求y關于x的回歸方程,并預測先進養(yǎng)殖技術投入為49千元時的年收益增量.

附:若隨機變量,則;

對于一組數據,其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

同步練習冊答案