【題目】在直角坐標(biāo)系xOy下,曲線C1的參數(shù)方程為 為參數(shù)),曲線C1在變換T的作用下變成曲線C2

1)求曲線C2的普通方程;

2)若m>1,求曲線C2與曲線C3y=m|x|-m的公共點的個數(shù).

【答案】1.(24

【解析】

1)先求出曲線C1的普通方程,再根據(jù)圖象變換可求出曲線C2的普通方程;

2)由題意可得上的點在橢圓E外,當(dāng)時,曲線的方程化為,聯(lián)立直線與橢圓的方程,由韋達(dá)定理可得當(dāng)時,曲線C2與曲線C3有且只有兩個不同的公共點,又曲線C2與曲線C3都關(guān)于y軸對稱,從而可得結(jié)論.

解:(1)因為曲線C1的參數(shù)方程為

所以曲線C1的普通方程為,

將變換T代入,得,

所以曲線C2的普通方程為

2)因為m>1,所以上的點在在橢圓E外,

當(dāng)x>0時,曲線的方程化為

代入,得,(*

因為

所以方程(*)有兩個不相等的實根x1,x2,

,所以x1>0,x2>0

所以當(dāng)x>0時,曲線C2與曲線C3有且只有兩個不同的公共點,

又因為曲線C2與曲線C3都關(guān)于y軸對稱,

所以當(dāng)x<0時,曲線C2與曲線C3有且只有兩個不同的公共點,

綜上,曲線C2與曲線C3y=m|x|-m的公共點的個數(shù)為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第條的相關(guān)規(guī)定:機動車行經(jīng)人行道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”《中華人民共和國道路交通安全法》第條規(guī)定:對不禮讓行人的駕駛員處以扣分,罰款元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

不“禮讓斑馬線”駕駛員人數(shù)

1)請利用所給數(shù)據(jù)求不“禮讓斑馬線”駕駛員人數(shù)與月份之間的回歸直線方程,并預(yù)測該路口月份的不“禮讓斑馬線”駕駛員人數(shù);

2)若從表中月份和月份的不“禮讓斑馬線”駕駛員中,采用分層抽樣方法抽取一個容量為的樣本,再從這人中任選人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.

參考公式:,.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠在2016年的減員增效中對部分人員實行分流,規(guī)定分流人員第一年可以到原單位領(lǐng)取工資的100%,從第二年起,以后每年只能在原單位按上一年的領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長,計劃創(chuàng)辦新的經(jīng)濟實體,該經(jīng)濟實體預(yù)計第一年屬投資階段,第二年每人可獲得元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年元,分流后進(jìn)入新經(jīng)濟實體,第年的收入為元;

1)求的通項公式;

2)當(dāng)時,是否一定可以保證這個人分流一年后的收入永遠(yuǎn)超過分流前的年收入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCDDE2,M為線段BF上一點,且DM⊥平面ACE

1)求BM的長;

2)求二面角ADMB的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國武漢于20191018日至20191027日成功舉辦了第七屆世界軍人運動會.來自109個國家的9300余名運動員同臺競技.經(jīng)過激烈的角逐,獎牌榜的前3名如下:

國家

金牌

銀牌

銅牌

獎牌總數(shù)

中國

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

某數(shù)學(xué)愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎代表.從這22名中隨機抽取3人, 則這3人中中國選手恰好1人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Ey21m1)的離心率為,過點P1,0)的直線與橢圓E交于AB不同的兩點,直線AA0垂直于直線x4,垂足為A0

(Ⅰ)求m的值;

(Ⅱ)求證:直線A0B恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知{an}是等差數(shù)列,其前n項和Snn22n+b1{bn}是等比數(shù)列,其前n項和Tn,則數(shù)列{ bn +an}的前5項和為( 。

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣東省2021年高考將實行模式,其最大特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、歷史這2科中自由選擇一門科目;化學(xué)、生物、政治、地理這4科中自由選擇兩門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),從某學(xué)校高一年級的學(xué)生中隨機抽取男生、女生個25人進(jìn)行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10.

1)請完成下面的列聯(lián)表:

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;

3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進(jìn)行座談,從這5人中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校開設(shè)了素描攝影剪紙書法四門選修課,要求每位同學(xué)都要選擇其中的兩門課程.已知甲同學(xué)選了素描,乙與甲沒有相同的課程,丙與甲恰有一門課程相同,丁與丙沒有相同課程.則以下說法錯誤的是(

A.丙有可能沒有選素描B.丁有可能沒有選素描

C.乙丁可能兩門課都相同D.這四個人里恰有2個人選素描

查看答案和解析>>

同步練習(xí)冊答案