【題目】如圖,三棱柱中, ,,平面平面, 與相交于點(diǎn).
(1)求證: ;
(2)求二面角的余弦值.
【答案】(1)見(jiàn)解析;(2)二面角的余弦值是.
【解析】試題分析:(1)首先菱形的性質(zhì)推出,然后利用面面垂直的性質(zhì)推出平面,從而根據(jù)線(xiàn)面垂直的性質(zhì)使問(wèn)題得證;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,然后分別求出相關(guān)點(diǎn)的坐標(biāo)與向量,由此求得平面與平面法向量,從而利用空間夾角公式求解即可.
試題解析:(1)已知側(cè)面是菱形, 是的中點(diǎn),∵,∴.
∵平面平面,且平面,平面 平面 ,
∴平面, .
(2)如圖,以為原點(diǎn),以, , 所在直線(xiàn)分別為軸, 軸, 軸建立空間直角坐標(biāo)系,由已知可得, , , ,
∴, , , , ,
設(shè)平面的一個(gè)法向量是, ,
由, ,
得,可得
∵平面 平面, ,∴平面,
∴平面的一個(gè)法向量是,
∴,即二面角的余弦值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a=e0.3,b=0.92,c=ln0.9,則a,b,c的大小關(guān)系是( )
A.a<b<cB.c<b<aC.c<a<bD.b<c<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論正確的是( )
A.兩條直線(xiàn)都和同一個(gè)平面平行,則這兩條直線(xiàn)平行
B.兩條直線(xiàn)沒(méi)有公共點(diǎn),則這兩條直線(xiàn)平行
C.兩條直線(xiàn)都和第三條直線(xiàn)平行,則這兩條直線(xiàn)平行
D.兩條直線(xiàn)都和第三條直線(xiàn)垂直,則這兩條直線(xiàn)平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)要完成下列兩項(xiàng)調(diào)查:①?gòu)哪成鐓^(qū)70戶(hù)高收入家庭、335戶(hù)中等收入家庭、95戶(hù)低收入家庭中選出100戶(hù),調(diào)查社會(huì)購(gòu)買(mǎi)能力的某項(xiàng)指標(biāo);②從某中學(xué)的15名藝術(shù)特長(zhǎng)生中選出3名調(diào)查學(xué)習(xí)負(fù)擔(dān)情況.這兩項(xiàng)調(diào)查宜采用的抽取方法是( )
A.①簡(jiǎn)單隨機(jī)抽樣,②分層隨機(jī)抽樣B.①分層隨機(jī)抽樣,②簡(jiǎn)單隨機(jī)抽樣
C.①②都用簡(jiǎn)單隨機(jī)抽樣D.①②都用分層隨機(jī)抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列關(guān)系:其中具有相關(guān)關(guān)系的是( )
①考試號(hào)與考生考試成績(jī); ②勤能補(bǔ)拙;
③水稻產(chǎn)量與氣候; ④正方形的邊長(zhǎng)與正方形的面積.
A.①②③B.①③④C.②③D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個(gè)工人每天可生產(chǎn)部件6件,或部件3件,或部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)部件的人數(shù)與生產(chǎn)部件的人數(shù)成正比,比例系數(shù)為(為正整數(shù)).
(1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫(xiě)出完成三件部件生產(chǎn)需要的時(shí)間;
(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開(kāi)工,試確定正整數(shù)的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)為的正項(xiàng)數(shù)列滿(mǎn)足,.
(1)若,,,求的取值范圍;
(2)設(shè)數(shù)列是公比為的等比數(shù)列,為數(shù)列前項(xiàng)的和.若,,求的取值范圍;
(3)若,,,()成等差數(shù)列,且,求正整數(shù)的最小值,以及取最小值時(shí)相應(yīng)數(shù)列,,,的公差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知函數(shù)(,)的圖像關(guān)于直線(xiàn)x=對(duì)稱(chēng),最大值為3,且圖像上相鄰兩個(gè)最高點(diǎn)的距離為.
(1)求的最小正周期;
(2)求函數(shù)的解析式;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直二面角D—AB—E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥平面BCE;
(2)求二面角B—AC—E的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com