如圖,E、F、G、H分別是空間四邊形AB、BC、CD、DA上的點,且EH與FG相
交于點O.求證:B、D、O三點共線.
∵E∈AB,H∈AD,
∴E∈平面ABD,H∈平面ABD.
∴EH
平面ABD.
∵EH∩FG=O,∴O∈平面ABD.
同理可證O∈平面BCD,
∴O∈平面ABD∩平面BCD,即O∈BD,
所以B、D、O三點共線.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如右圖P、Q分別是A
1B
1、BB
1的四等分點,M、N分別是D
1C
1、CC
1的中點.沿M→N→Q→P截去一部分,截去的幾何體是什么?剩下的幾何體也是嗎?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,矩形ABCD和梯形BEFC所在平面互相垂直,
BE∥CF,∠BCF=∠CEF=90°,AD=
,EF=2.
(1)求證:AE∥平面DCF;
(2)當AB的長為何值時,二面角A—EF—C的大小為60°?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,已知直三棱柱ABC—A
1B
1C
1中,△ABC為等腰直角三角形,
∠BAC=90°,且AB=AA
1,D、E、F分別為B
1A、C
1C、BC的中點.
求證:
(1)DE∥平面ABC;
(2)B
1F⊥平面AEF.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,四棱錐P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點,又二面角P—CD—B為45°.
(1)求證:AF∥平面PEC;
(2)求證:平面PEC⊥平面PCD;
(3)設(shè)AD=2,CD=2
,求點A到平面PEC的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
棱長為2的正四面體的四個頂點都在同一個球面上,若過該球球心的一個截面如圖所示,
求圖中三角形(正四面體的截面)的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
邊長為5的正方形EFGH是圓柱的軸截面,求從點E沿圓柱的側(cè)面到相對頂點G的最短距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖, 在直三棱柱
ABC-
A1B1C1中,
AC=3,
BC=4,
AA1=4,點
D是
AB的中點, (I)求證:(I)
AC⊥
BC1;
(II)求證:
AC 1//平面
CDB1;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
一個正方體紙盒展開后如圖,在原正方體紙盒中有下列結(jié)論:
①
AB⊥
EF;
②
AB與C
M成60°角;
③
EF與
MN是異面直線;
④
MN∥
CD.
其中正確的是( )
查看答案和解析>>