【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃?xì)夤艿?已知小區(qū)某處三幢房屋分別位于扇形的三個(gè)頂點(diǎn)上,點(diǎn)是弧的中點(diǎn),現(xiàn)欲在線段上找一處開挖工作坑(不與點(diǎn),重合),為鋪設(shè)三條地下天燃?xì)夤芫,,,已知米,,記,該三條地下天燃?xì)夤芫的總長度為米.

(1)將表示成的函數(shù),并寫出的范圍;

(2)請確定工作坑的位置,使此處地下天燃?xì)夤芫的總長度最小,并求出總長度的最小值.

【答案】(1);(2)當(dāng)長為米時(shí),此處天燃?xì)夤芫的長度最短為米.

【解析】

(1)利用正弦定理可求得,從而得到,其中.

(2)利用導(dǎo)數(shù)可求的最小值.

(1)因?yàn)?/span>為弧的中點(diǎn),由對稱性可知,,

,,

由正弦定理,得

,得,

所以

由題意,的取值范圍是.

(2)令,

,令,得

列表:

-

0

+

極小值

所以當(dāng)時(shí),米,有唯一極小值.

此時(shí)有最小值米.

答:當(dāng)長為米時(shí),此處天燃?xì)夤芫的長度最短為米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓具有以下性質(zhì):設(shè)A,B是圓C:上關(guān)于原點(diǎn)對稱的兩點(diǎn),點(diǎn)P是圓上的任意一點(diǎn).若直線PA,PB的斜率都存在并分別記為,,則=﹣1,是與點(diǎn)P的位置無關(guān)的定值.

(1)試類比圓的上述性質(zhì),寫出橢圓的一個(gè)類似性質(zhì),并加以證明;

(2)如圖,若橢圓M的標(biāo)準(zhǔn)方程為,點(diǎn)P在橢圓M上且位于第一象限,點(diǎn)A,B分別為橢圓長軸的兩個(gè)端點(diǎn),過點(diǎn)A,B分別作⊥PA,⊥PB,直線,交于點(diǎn)C,直線與橢圓M的另一交點(diǎn)為Q,且,求的取值范圍(可直接使用(1)中證明的結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥開發(fā)公司實(shí)驗(yàn)室有瓶溶液,其中瓶中有細(xì)菌,現(xiàn)需要把含有細(xì)菌的溶液檢驗(yàn)出來,有如下兩種方案:

方案一:逐瓶檢驗(yàn),則需檢驗(yàn)次;

方案二:混合檢驗(yàn),將瓶溶液分別取樣,混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果不含有細(xì)菌,則瓶溶液全部不含有細(xì)菌;若檢驗(yàn)結(jié)果含有細(xì)菌,就要對這瓶溶液再逐瓶檢驗(yàn),此時(shí)檢驗(yàn)次數(shù)總共為.

(1)假設(shè),采用方案一,求恰好檢驗(yàn)3次就能確定哪兩瓶溶液含有細(xì)菌的概率;

(2)現(xiàn)對瓶溶液進(jìn)行檢驗(yàn),已知每瓶溶液含有細(xì)菌的概率均為.

若采用方案一.需檢驗(yàn)的總次數(shù)為,若采用方案二.需檢驗(yàn)的總次數(shù)為.

(i)的期望相等.試求關(guān)于的函數(shù)解析式;

(ii),且采用方案二總次數(shù)的期望小于采用方案一總次數(shù)的期望.的最大值.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)分別求的值:

(2)討論的解的個(gè)數(shù):

(3)若對任意給定的,都存在唯一的,滿足,求實(shí)數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對100名男生和100名女生進(jìn)行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計(jì)結(jié)果:

(1)若該大學(xué)共有女生750人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);

(2)完成聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”.

附:,其中nabcd為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為過原點(diǎn)且斜率為1的直線交橢圓兩點(diǎn),四邊形的周長與面積分別為8與 .

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線交橢圓兩點(diǎn),且求證:到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱臺被過點(diǎn)的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長為2的菱形,,平面,.

(Ⅰ)求證:平面平面

(Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓O的直徑,點(diǎn)C是圓O上異于AB的點(diǎn),直線平面,E,F分別是,的中點(diǎn).

1)記平面與平面的交線為l,試判斷直線l與平面的位置關(guān)系,并加以證明;

2)設(shè),求二面角大小的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案