【題目】已知圓具有以下性質(zhì):設(shè)A,B是圓C:上關(guān)于原點對稱的兩點,點P是圓上的任意一點.若直線PA,PB的斜率都存在并分別記為,,則=﹣1,是與點P的位置無關(guān)的定值.

(1)試類比圓的上述性質(zhì),寫出橢圓的一個類似性質(zhì),并加以證明;

(2)如圖,若橢圓M的標準方程為,點P在橢圓M上且位于第一象限,點A,B分別為橢圓長軸的兩個端點,過點A,B分別作⊥PA,⊥PB,直線,交于點C,直線與橢圓M的另一交點為Q,且,求的取值范圍(可直接使用(1)中證明的結(jié)論).

【答案】(1)見證明;(2)

【解析】

1)設(shè)點,則點,由,由橢圓方程帶入化簡可得解;

2)設(shè)AP的斜率為k,,結(jié)合(1)中的結(jié)論可得直線AC、BC和BQ的方程,聯(lián)立直線方程可得,由,結(jié)合可得解.

(1)性質(zhì):設(shè)A,B是橢圓上關(guān)于原點對稱的兩點,點是橢圓上的任意一點.若直線的斜率都存在并分別記為,,則是與點的位置無關(guān)的定值.

證明:設(shè)點,則點,從而.設(shè)點,

是與點P的位置無關(guān)的定值.

(2)設(shè)AP的斜率為k,,因為P為橢圓M上第一象限內(nèi)一點,所以由(1)結(jié)論可知,所以BP的斜率為

因為,所以,則AC的方程為

因為,所以,則BC的方程為.

,得,即

設(shè),因為

且直線的斜率,所以的斜率為,則的方程為

聯(lián)立方程,得,即

因為,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機抽取了七位醫(yī)護人員的關(guān)愛患者考核分數(shù)(患者考核:10分制),用相關(guān)的特征量表示;醫(yī)護專業(yè)知識考核分數(shù)(試卷考試:100分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:

(Ⅰ)求關(guān)于的線性回歸方程(計算結(jié)果精確到0.01);

(Ⅱ)利用(I)中的線性回歸方程,分析醫(yī)護專業(yè)考核分數(shù)的變化對關(guān)愛患者考核分數(shù)的影響,并估計某醫(yī)護人員的醫(yī)護專業(yè)知識考核分數(shù)為95分時,他的關(guān)愛患者考核分數(shù)(精確到0.1);

(Ⅲ)現(xiàn)要從醫(yī)護專業(yè)知識考核分數(shù)95分以下的醫(yī)護人員中選派2人參加組建的“九寨溝災(zāi)后醫(yī)護小分隊”培訓(xùn),求這兩人中至少有一人考核分數(shù)在90分以下的概率.

附:回歸方程中斜率和截距的最小二乘法估計公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

已知函數(shù)a為實數(shù)).

(1)當時,求函數(shù)的圖像在處的切線方程;

(2)求在區(qū)間上的最小值;

(3)若存在兩個不等實數(shù),使方程成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.若使租賃公司的月收益最大,每輛車的月租金應(yīng)該定為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若有最小值,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)已知為平面內(nèi)的兩個定點,過點的直線與橢圓交于, 兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】城鎮(zhèn)化是國家現(xiàn)代化的重要指標,據(jù)有關(guān)資料顯示,19782013年,我國城鎮(zhèn)常住人口從1.7億增加到7.3億.假設(shè)每一年城鎮(zhèn)常住人口的增加量都相等,記1978年后第t(限定)年的城鎮(zhèn)常住人口為億.寫出的解析式,并由此估算出我國2017年的城鎮(zhèn)常住人口數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為,分別是的中點,則過且與平行的平面截正方體所得截面的面積為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃氣管道.已知小區(qū)某處三幢房屋分別位于扇形的三個頂點上,點是弧的中點,現(xiàn)欲在線段上找一處開挖工作坑(不與點,重合),為鋪設(shè)三條地下天燃氣管線,,已知米,,記,該三條地下天燃氣管線的總長度為米.

(1)將表示成的函數(shù),并寫出的范圍;

(2)請確定工作坑的位置,使此處地下天燃氣管線的總長度最小,并求出總長度的最小值.

查看答案和解析>>

同步練習(xí)冊答案