如圖,己知直線l與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B(2,0).

(1)若動(dòng)點(diǎn)M滿足,求點(diǎn)M軌跡C的方程:
(2)若過點(diǎn)B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點(diǎn)E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
(1)
(2)(.

試題分析:

解:(I)由,∴直線的斜率為, 1分
的方程為,∴點(diǎn)A坐標(biāo)為(1,0)   2分
設(shè)   則,

整理,得 6分
(II)如圖,由題意知直線的斜率存在且不為零,設(shè)方程為y=k(x-2)(k≠0)①

將①代入,整理,得
,
得0<k2<.  設(shè)
 ②  7分
,由此可得
由②知



.∴面積之比的取值范圍是(.  14分
點(diǎn)評:主要是考查了直線與橢圓的位置關(guān)系,以及向量的數(shù)量積的運(yùn)用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:(a>0,b>0)的左、右焦點(diǎn)分別為、,離心率為3,直線y=2與C的兩個(gè)交點(diǎn)間的距離為.
(Ⅰ)求a,b;
(Ⅱ)設(shè)過的直線l與C的左、右兩支分別交于A、B兩點(diǎn),且,證明:、成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,短軸長為4.

(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線x=2與橢圓C交于P、Q兩點(diǎn),A、B是橢圓O上位于直線PQ兩側(cè)的動(dòng)點(diǎn),且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的右焦點(diǎn)為(3,0),則該雙曲線的離心率等于 (   )
A.B.C..D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過直線y=﹣1上的動(dòng)點(diǎn)A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點(diǎn).
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線PQ過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

知圓柱的底面半徑為2,高為3,用一個(gè)平面去截,若所截得的截面為橢圓,則橢圓的離心率的取值范圍為(  )
A.B.(0,C.D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)是 (    )
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是橢圓的左右焦點(diǎn),過軸垂直的直線交橢圓于兩點(diǎn),若是銳角三角形,則橢圓離心率的范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。

查看答案和解析>>

同步練習(xí)冊答案