【題目】試比較nn+1與(n+1)n(n∈N*)的大小,分別取n=1,2,3,4,5加以試驗(yàn),根據(jù)試驗(yàn)結(jié)果猜測(cè)一個(gè)一般性結(jié)論.
【答案】答案見解析
【解析】試題分析:本題考査的知識(shí)點(diǎn)是歸納推理與數(shù)學(xué)歸納法,可以取 ,列出與的前項(xiàng),然后分別比較其大小,然后由歸納推理猜想出一個(gè)一般性的結(jié)論,然后利用數(shù)學(xué)歸納法進(jìn)行證明,檢驗(yàn)時(shí)等式成立,假設(shè)時(shí)命題成立,證明時(shí)命題也成立即可.
試題解析:當(dāng)n=1時(shí),nn+1=1,(n+1)n=2,此時(shí),nn+1<(n+1)n,
當(dāng)n=2時(shí),nn+1=8,(n+1)n=9,此時(shí),nn+1<(n+1)n,
當(dāng)n=3時(shí),nn+1=81,(n+1)n=64,此時(shí),nn+1>(n+1)n,
當(dāng)n=4時(shí),nn+1=1 024,(n+1)n=625,此時(shí),nn+1>(n+1)n,
根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3(n∈N*)時(shí),nn+1>(n+1)n恒成立.
證明:①當(dāng)n=3時(shí),nn+1=34=81>(n+1)n=43=64,
即nn+1>(n+1)n成立;
②假設(shè)當(dāng)n=k時(shí),kk+1>(k+1)k成立,即>1,
則當(dāng)n=k+1時(shí),=(k+1)()k+1>(k+1)()k+1=>1,
即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時(shí),猜想也成立,
∴當(dāng)n≥3(n∈N*)時(shí),nn+1>(n+1)n恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級(jí)某次數(shù)學(xué)競(jìng)賽隨機(jī)抽取100名學(xué)生的成績,分組為[50,60),[60,70),[70,80),[80,90),[90,100],統(tǒng)計(jì)后得到頻率分布直方圖如圖所示:
(1)試估計(jì)這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到0.1);
(2)年級(jí)決定在成績[70,100]中用分層抽樣抽取6人組成一個(gè)調(diào)研小組,對(duì)高一年級(jí)學(xué)生課外學(xué)習(xí)數(shù)學(xué)的情況做一個(gè)調(diào)查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?
(3)現(xiàn)在要從(2)中抽取的6人中選出正副2個(gè)小組長,求成績?cè)?/span>[80,90)中至少有1人當(dāng)選為正、副小組長的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.
(1)判斷f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函數(shù)”,哪些不是,并說明理由;
(2)若函數(shù)g(x)=lnx(x∈[M,+∞))是“保三角形函數(shù)”,求M的最小值;
(3)若函數(shù)h(x)=sinx(x∈(0,A))是“保三角形函數(shù)”,求A的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
注:年份代碼1﹣7分別對(duì)應(yīng)年份2008﹣2014.
(1)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以證明;
(2)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國生活垃圾無害化處理量.
附注:
參考數(shù)據(jù): yi=9.32, tiyi=40.17, =0.55, ≈2.646.
參考公式: ,回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a2=2,(n-1)an+1-nan+1=0(n∈N*),求數(shù)列{an}的通項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì),使得等式對(duì)定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.
(1)若函數(shù)是“型函數(shù)”,且,求出滿足條件的實(shí)數(shù)對(duì);
(2)已知函數(shù).函數(shù)是“型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)為,當(dāng)時(shí),.若對(duì)任意時(shí),都存在,使得,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(0)=2,f(x)-f(x-1)=2x+1,求函數(shù)f(x2+1)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其圖象與x軸交于兩點(diǎn),且.
(1)證明: ;
(2)證明: ;(其中為的導(dǎo)函數(shù))
(3)設(shè)點(diǎn)C在函數(shù)的圖象上,且△ABC為等邊三角形,記,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com