【題目】已知圓的圓心在直線:上,圓被軸截得弦長為4,且過點.
(1)求圓的方程;
(2)若點為直線:上的動點,由點向圓作切線,求切線長的最小值.
【答案】(1)(2)2
【解析】
(1)設(shè)出的標準方程,根據(jù)圓的圓心在直線:上,可得圓心坐標之間的關(guān)系,再由圓被軸截得弦長為4,又得到一個等式,再把點代入圓的標準方程中,這樣解方程組進行求解即可;
(2)因為點向圓作切線,要使得切線長最小,只需最小,只有當時,切線長最小,結(jié)合點到直線距離公式和勾股定理進行求解即可.
解:(1)設(shè)圓的標準方程為,
因為圓的圓心在直線:上,
所以,
因為圓被軸截得弦長為4,
所以,
因為圓過點,
所以,
解得:,,,
故圓的方程為.
(2)因為點向圓作切線,要使得切線長最小,只需最小,
所以當時,切線長最小,
此時,
故切線長為.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的方程為y=x-2,又直線l過橢圓C:(a>b>0)的右焦點,且橢圓的離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點D(0,1)的直線與橢圓C交于點A,B,求△AOB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點,,.
(1)求證:平面BCD;
(2)求異面直線AB與CD所成角的余弦值;
(3)求點E到平面ACD的距離。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中:底面ABCD,底面ABCD為梯形,,,且,BC=1,M為棱PD上的點。
(Ⅰ)若,求證:平面PAB;
(Ⅱ)求直線BD與平面PAD所成角的大小;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為增強市民的環(huán)境保護意識,某市面向全市學校征召100名教師做義務(wù)宣傳志愿者,成立環(huán)境保護宣傳組,現(xiàn)把該組的成員按年齡分成5組,如下表所示:
組別 | 年齡 | 人數(shù) |
1 | 5 | |
2 | 35 | |
3 | 20 | |
4 | 30 | |
5 | 10 |
(Ⅰ)若從第3,4,5組中用分層抽樣的方法選出6名志愿者參加某社區(qū)宣傳活動,應(yīng)從第3,4,5組各選出多少名志愿者?
(Ⅱ)在Ⅰ的條件下,宣傳組決定在這6名志愿者中隨機選2名志愿者介紹宣傳經(jīng)驗.
(。┝谐鏊锌赡芙Y(jié)果;
(ⅱ)求第4組至少有1名志愿者被選中的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“微信運動”已經(jīng)成為當下最熱門的健身方式,小李的微信朋友圈內(nèi)也有大量的好友參加了“微信運動”.他隨機的選取了其中30人,記錄了他們某一天走路的步數(shù),將數(shù)據(jù)整理如下:
步數(shù) | |||
人數(shù) | 5 | 13 | 12 |
(1)若采用樣本估計總體的方式,試估計小李所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)若超過8000步則他被系統(tǒng)評定為“積極型”,否則評定為“懈怠型”,將這30人按照“積極型”、“懈怠型”分成兩層,進行分層抽樣,從中抽取5人,將這5人中屬于“積極型”的人依次記為,屬于“懈怠型”的人依次記為,現(xiàn)再從這5人中隨機抽取2人接受問卷調(diào)查.設(shè)為事件“抽取的2人來自不同的類型”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從甲、乙、丙、丁、戊五名志愿者中選派三人分別從事翻譯、導游、禮儀三項不同工作,若其中乙和丙只能從事前兩項工作,其余三人均能從事這三項工作,則不同的選派方案共有( )
A.36種B.12種C.18種D.24種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com