【題目】如圖,點(diǎn)是雙曲線(xiàn)上的動(dòng)點(diǎn),是雙曲線(xiàn)的焦點(diǎn),M的平分線(xiàn)上一點(diǎn),且,某同學(xué)用以下方法研究:延長(zhǎng)于點(diǎn)N,可知為等腰三角形,且M的中點(diǎn),得,類(lèi)似地:點(diǎn)是橢圓上的動(dòng)點(diǎn),橢圓的焦點(diǎn),M的平分線(xiàn)上一點(diǎn),且的取值范圍是______

【答案】

【解析】

利用M是∠F1PF2平分線(xiàn)上的一點(diǎn),且F2MMP,判斷OM是三角形F1F2N的中位線(xiàn),把OMPF1,PF2表示,再利用橢圓的焦半徑公式,轉(zhuǎn)化為用橢圓上點(diǎn)的橫坐標(biāo)表示,借助橢圓的范圍即可求出OM的范圍.

如圖,延長(zhǎng)F2M,交PF1N點(diǎn),

PM是∠F1PF2平分線(xiàn),且0

F2MMP,

|PN||PF2|,MF2N的中點(diǎn),

連接OM,

OF1F2中點(diǎn),MF2N中點(diǎn),

|OM||F1N|||PF1||PN||||PF1||PF2||

∵在橢圓1ab0)中,

設(shè)P點(diǎn)坐標(biāo)為(x0,y0

|PF1|a+ex0,|PF2|aex0,

||PF1||PF2|||a+ex0a+ex0||2ex0|2e|x0||x0|,

即有|OM||x0|,

P點(diǎn)在橢圓1ab0)上,

|x0|∈(0,a]

又∵當(dāng)|x0|a時(shí),F2MMP不成立,∴|x0|∈(0,a),

|OM|∈(0,c=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查煤礦公司員工的飲食習(xí)慣與月收入之間的關(guān)系,隨機(jī)抽取了30名員工,并制作了這30人的月平均收入的頻率分布直方圖和飲食指數(shù)表(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類(lèi)為主).其中月收入4000元以上員工中有11人飲食指數(shù)高于70.

20

21

21

25

32

33

36

37

42

43

44

45

45

58

58

59

61

66

74

75

76

77

77

78

78

82

83

85

86

90

(Ⅰ)是否有95%的把握認(rèn)為飲食習(xí)慣與月收入有關(guān)系?若有請(qǐng)說(shuō)明理由,若沒(méi)有,說(shuō)明理由并分析原因;

(Ⅱ)以樣本中的頻率作為概率,從該公司所有主食蔬菜的員工中隨機(jī)抽取3人,這3人中月收入4000元以上的人數(shù)為,求的分布列與期望;

(Ⅲ)經(jīng)調(diào)查該煤礦公司若干戶(hù)家庭的年收入(萬(wàn)元)和年飲食支出(萬(wàn)元)具有線(xiàn)性相關(guān)關(guān)系,并得到關(guān)于的回歸直線(xiàn)方程:.若該公司一個(gè)員工與其妻子的月收入恰好都為這30人的月平均收入(該家庭只有兩人收入),估計(jì)該家庭的年飲食支出費(fèi)用.

附:

.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱中,各棱長(zhǎng)均為4, 、分別是,的中點(diǎn).

(1)求證:平面;

(2)求直線(xiàn)與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)為了了解某社區(qū)居民對(duì)某娛樂(lè)節(jié)目的收視情況,隨機(jī)抽取了名觀(guān)眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀(guān)眾日均收看該娛樂(lè)節(jié)目時(shí)間的頻率分布直方圖:

1)求實(shí)數(shù)的值;

2)根據(jù)統(tǒng)計(jì)結(jié)果,試估計(jì)觀(guān)眾觀(guān)看該娛樂(lè)節(jié)目時(shí)間的中位數(shù)(結(jié)果保留一位小數(shù));

3)從觀(guān)看時(shí)間在,的人中用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人的觀(guān)看時(shí)間都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,,四邊形BDEF是矩形,平面平面ABCD,,HCF的中點(diǎn).

1)求證:平面BDEF;

2)求直線(xiàn)DH與平面CEF所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)l過(guò)點(diǎn)M(2,1),且分別交x軸、y軸的正半軸于點(diǎn)A、B.點(diǎn)O是坐標(biāo)原點(diǎn).

(1)當(dāng)△ABO的面積最小時(shí),求直線(xiàn)l的方程;

(2)當(dāng)最小時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線(xiàn)方程為.我們將其結(jié)論推廣:橢圓)上的點(diǎn)處的切線(xiàn)方程為,在解本題時(shí)可以直接應(yīng)用.已知,直線(xiàn)與橢圓)有且只有一個(gè)公共點(diǎn).

1)求橢圓的方程;

2)設(shè)為坐標(biāo)原點(diǎn),過(guò)橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線(xiàn)、,且交于點(diǎn).當(dāng)變化時(shí),求面積的最大值;

3)若是橢圓上不同的兩點(diǎn),軸,圓過(guò)且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱(chēng)圓為該橢圓的一個(gè)內(nèi)切圓.試問(wèn):橢圓是否存在過(guò)左焦點(diǎn)的內(nèi)切圓?若存在,求出圓心的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)生對(duì)其親屬30人的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用下圖所示的莖葉圖表示30人的飲食指數(shù).(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類(lèi)為主)

(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:

主食 蔬菜

主食 肉類(lèi)

總計(jì)

50歲以下

50歲以上

總計(jì)

(2)能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“其親屬的飲食習(xí)慣與年齡有關(guān)”?并寫(xiě)出簡(jiǎn)要分析.

附參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)

1)求b的值,并求出函數(shù)的定義域

2)若存在區(qū)間,使得時(shí),的取值范圍為,求的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案