【題目】如圖,梯形中,,,,沿對角線將折起,使點在平面內(nèi)的射影恰在上.
(Ⅰ)求證:面;
(Ⅱ)求異面直線與所成的角;
(Ⅲ)求二面角的余弦值.
【答案】(Ⅰ)見解析(Ⅱ) (Ⅲ)
【解析】
(Ⅰ)建立空間直角坐標系,利用向量的方法證明,可得AB⊥CD,再利用AB⊥BC,可得AB⊥平面BCD;
(Ⅱ)求出,利用向量夾角公式,可求異面直線BC與AD所成的角;
(Ⅲ)求出平面ACD的法向量,平面ABD的法向量,利用向量夾角公式,可求二面角B﹣AD﹣C的平面角;
(Ⅰ)在梯形ABCD中,∵,∴AC2+DC2=AD2,∴AC⊥DC.
又BO⊥平面ACD,AC平面ACD,∴BO⊥AC,又AB=CB,∴O為AC中點.
以O為坐標原點,以OA,OB所在直線分別為x,z軸,以過O且平行于CD的直線為y軸建立空間直角坐標系.
則,
∴,,∴,∴AB⊥CD,
又AB⊥BC,BC∩CD=C,∴AB⊥平面BCD;
(Ⅱ)∵,∴,
∴,即異面直線BC與AD所成的角為60°;
(Ⅲ)平面ACD的法向量為.
設平面ABD的法向量為,則,即,解得,取z=1,∴.
設二面角B
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過拋物線上的一點作拋物線的切線,分別交x軸于點D交y軸于點B,點Q在拋物線上,點E,F分別在線段AQ,BQ上,且滿足,,線段QD與交于點P.
(1)當點P在拋物線C上,且時,求直線的方程;
(2)當時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.
(1)求橢圓的標準方程;
(2)若為等腰三角形,求點的坐標;
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】時值金秋十月,正是秋高氣爽,陽光明媚的美好時刻。復興中學一年一度的校運會正在密鑼緊鼓地籌備中,同學們也在熱切地期盼著,都想為校運會出一份力。小智同學則通過對學校有關部門的走訪,隨機地統(tǒng)計了過去許多年中的五個年份的校運會“參與”人數(shù)及相關數(shù)據(jù),并進行分析,希望能為運動會組織者科學地安排提供參考。
附:①過去許多年來學校的學生數(shù)基本上穩(wěn)定在3500人左右;②“參與”人數(shù)是指運動員和志愿者,其余同學均為“啦啦隊員”,不計入其中;③用數(shù)字1、2、3、4、5表示小智同學統(tǒng)計的五個年份的年份數(shù),今年的年份數(shù)是6;
統(tǒng)計表(一)
年份數(shù)x | 1 | 2 | 3 | 4 | 5 |
“參與”人數(shù)(y千人) | 1.9 | 2.3 | 2.0 | 2.5 | 2.8 |
統(tǒng)計表(二)
高一(3)(4)班參加羽毛球比賽的情況:
男生 | 女生 | 小計 | |
參加(人數(shù)) | 26 | b | 50 |
不參加(人數(shù)) | c | 20 | |
小計 | 44 | 100 |
(1)請你與小智同學一起根據(jù)統(tǒng)計表(一)所給的數(shù)據(jù),求出“參與”人數(shù)y關于年份數(shù)x的線性回歸方程,并預估今年的校運會的“參與”人數(shù);
(2)學校命名“參與”人數(shù)占總人數(shù)的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運會的“參與”人數(shù)是互不影響的,且假定小智同學對今年校運會的“參與”人數(shù)的預估是正確的,并以這6個年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率,F(xiàn)從過去許多年中隨機抽取9年來研究,記這9年中“體活躍年”的個數(shù)為隨機變量,試求隨機變量的分布列、期望和方差;
(3)根據(jù)統(tǒng)計表(二),請問:你能否有超過60%的把握認為“羽毛球運動”與“性別”有關?
參考公式和數(shù)據(jù)一:,,,
參考公式二:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】阿波羅尼斯(約公元前年)證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點、間的距離為,動點滿足,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市食品藥品監(jiān)督管理局開展2019年春季校園餐飲安全檢查,對本市的8所中學食堂進行了原料采購加工標準和衛(wèi)生標準的檢查和評分,其評分情況如下表所示:
中學編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采購加工標準評分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
衛(wèi)生標準評分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x與y之間具有線性相關關系,求y關于x的線性回歸方程;(精確到0.1)
(2)現(xiàn)從8個被檢查的中學食堂中任意抽取兩個組成一組,若兩個中學食堂的原料采購加工標準和衛(wèi)生標準的評分均超過80分,則組成“對比標兵食堂”,求該組被評為“對比標兵食堂”的概率.
參考公式:,;
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學宣傳部組織了這樣一個游戲項目:甲箱子里面有3個紅球,2個白球,乙箱子里面有1個紅球,2個白球,這些球除了顏色以外,完全相同。每次游戲需要從這兩個箱子里面各隨機摸出兩個球.
(1)設在一次游戲中,摸出紅球的個數(shù)為,求分布列.
(2)若在一次游戲中,摸出的紅球不少于2個,則獲獎.
①求一次游戲中,獲獎的概率;
②若每次游戲結束后,將球放回原來的箱子,設4次游戲中獲獎次數(shù)為,求的數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com