【題目】如圖,在四棱錐中,,,為等邊三角形,且平面平面中點.

1)求證:平面;

2)求二面角的正弦值.

【答案】1)證明見解析;(2.

【解析】

(1)可證平面,從而得到要證的線面垂直;

(2)過點的垂線,交于點,連結(jié),可證二面角的平面角為,利用余弦定理可求其余弦值后可得其正弦值.我們也可以建立如圖所示的空間直角坐標系,求出平面的法向量和平面的法向量后可求它們的夾角的余弦值,從而得到二面角的正弦值.

(1)證明:因為,

所以,

又∵平面平面,且平面平面平面,

平面,又∵平面,∴ 所以

中點,且為等邊三角形,∴,又∵,

平面.

(2)【法一】過點的垂線,交于點,連結(jié),

中點為,連接.

因為為等邊三角形,所以,

由平面平面,平面,平面平面,

所以平面

平面,所以,由條件知,

,所以平面

平面,所以,

,所以,

所以

由二面角的定義知,二面角的平面角為,

中,,

,所以,

同理可得,

,在中,

所以,二面角的正弦值為.

【法二】

中點為,連接,因為為等邊三角形,所以,

由平面平面,平面,平面平面,

所以平面,

所以,由,,

可知,所以,

中點為坐標原點,所在直線為軸,建立如圖所示的空間直角坐標系,

所以,

所以,

由(1)知,可以為平面的法向量,

因為的中點,

所以,

由(1)知,平面的一個法向量為,

設平面的法向量為,

,則

所以,

所以二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲,乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標劃分:指標大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺車床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標

[85,90)

[90,95)

[95,100)

[100,105)

[105,110)

機床甲

8

12

40

32

8

機床乙

7

18

40

29

6

(1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;

(2)甲機床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設甲機床某天生產(chǎn)50件零件,請估計甲機床該天的日利潤(單位:元);

(3)從甲、乙機床生產(chǎn)的零件指標在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工廠一種溶液的成品,生產(chǎn)過程的最后工序是過濾溶液中的雜質(zhì),過濾初期溶液含雜質(zhì)為2%,每經(jīng)過一次過濾均可使溶液雜質(zhì)含量減少,記過濾次數(shù)為x)時溶液雜質(zhì)含量為y.

1)寫出yx的函數(shù)關系式;

2)按市場要求,出廠成品雜質(zhì)含量不能超過0.1%,問至少經(jīng)過幾次過濾才能使產(chǎn)品達到市場要求?(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

已知, 為橢圓的左、右頂點, 為其右焦點, 是橢圓上異于的動點,且面積的最大值為

)求橢圓的方程及離心率;

)直線與橢圓在點處的切線交于點,當直線繞點轉(zhuǎn)動時,試判斷以

為直徑的圓與直線的位置關系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,其中左焦點(-2,0).

1) 求橢圓C的方程;

2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)的積函數(shù).

1)求函數(shù)的表達式,并求其定義域;

2)當時,求函數(shù)的值域

3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構成的集合;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓ab0)的離心率,過點A0,-b)和Ba0)的直線與原點的距離為

1)求橢圓的方程.

2)已知定點E-1,0),若直線ykx2k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,. 

(1)證明:平面平面;

(2)若,為棱的中點,,,求四面體的體積.

查看答案和解析>>

同步練習冊答案