【題目】已知橢圓的左右焦點(diǎn)分別為,且.過(guò)橢圓的右焦點(diǎn)作長(zhǎng)軸的垂線(xiàn)與橢圓,在第一象限交于點(diǎn),且滿(mǎn)足.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若矩形的四條邊均與橢圓相切,求該矩形面積的取值范圍.

【答案】12

【解析】

1)易知,設(shè),根據(jù)勾股定理計(jì)算得到,得到橢圓方程.

(2)考慮矩形邊與坐標(biāo)軸平行和不平行兩種情況,聯(lián)立方程組根據(jù)得到的關(guān)系,計(jì)算邊長(zhǎng)得到面積表達(dá)式,根據(jù)均值不等式計(jì)算得到答案.

1)由,可知橢圓半焦距

設(shè),因?yàn)?/span>,所以,

中,,即,所以,

所以,解得,所以橢圓的標(biāo)準(zhǔn)方程為.

2)記矩形面積為,當(dāng)矩形一邊與坐標(biāo)軸平行時(shí),易知.

當(dāng)矩形的邊與坐標(biāo)軸不平行時(shí),根據(jù)對(duì)稱(chēng)性,設(shè)其中一邊所在直線(xiàn)方程為,

則對(duì)邊所在直線(xiàn)方程為,

另一邊所在的直線(xiàn)方程為,則對(duì)邊所在直線(xiàn)方程為,

聯(lián)立,得,

由題意知,整理得,

矩形的一邊長(zhǎng)為,同理,矩形的另一邊長(zhǎng)為

,

因?yàn)?/span>,所以,所以(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),

所以,則,所以.

綜上所述,該矩形面積的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高三年級(jí)在返校復(fù)學(xué)后,為了做好疫情防護(hù)工作,一位防疫督察員要將2盒完全相同的口罩和3盒完全相同的普通醫(yī)用口罩全部分配給3個(gè)不同的班,每個(gè)班至少分得一盒,則不同的分法種數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,,//,.

1)證明://平面BCE.

2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求直線(xiàn)關(guān)于對(duì)稱(chēng)的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為為參數(shù)),直線(xiàn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線(xiàn)l和曲線(xiàn)C的極坐標(biāo)方程;

2)若直線(xiàn)與直線(xiàn)l相交于點(diǎn)A,與曲線(xiàn)C相交于不同的兩點(diǎn)MN.的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正態(tài)分布有極其廣泛的實(shí)際背景,生產(chǎn)與科學(xué)實(shí)驗(yàn)中很多隨機(jī)變量的概率分布都可以近似地用正態(tài)分布來(lái)描述.例如,同一種生物體的身長(zhǎng)、體重等指標(biāo).隨著“綠水青山就是金山銀山”的觀念不斷的深入人心,環(huán)保工作快速推進(jìn),很多地方的環(huán)境出現(xiàn)了可喜的變化.為了調(diào)查某水庫(kù)的環(huán)境保護(hù)情況,在水庫(kù)中隨機(jī)捕撈了100條魚(yú)稱(chēng)重.經(jīng)整理分析后發(fā)現(xiàn),魚(yú)的重量x(單位:kg)近似服從正態(tài)分布,如圖所示,已知.

(Ⅰ)若從水庫(kù)中隨機(jī)捕撈一條魚(yú),求魚(yú)的重量在內(nèi)的概率;

(Ⅱ)(ⅰ)從捕撈的100條魚(yú)中隨機(jī)挑出6條魚(yú)測(cè)量體重,6條魚(yú)的重量情況如表.

重量范圍(單位:kg

條數(shù)

1

3

2

為了進(jìn)一步了解魚(yú)的生理指標(biāo)情況,從6條魚(yú)中隨機(jī)選出3條,記隨機(jī)選出的3條魚(yú)中體重在內(nèi)的條數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;

(ⅱ)若將選剩下的94條魚(yú)稱(chēng)重做標(biāo)記后立即放生.兩周后又隨機(jī)捕撈1000條魚(yú),發(fā)現(xiàn)其中帶有標(biāo)記的有2.為了調(diào)整生態(tài)結(jié)構(gòu),促進(jìn)種群的優(yōu)化,預(yù)備捕撈體重在內(nèi)的魚(yú)的總數(shù)的40%進(jìn)行出售,試估算水庫(kù)中魚(yú)的條數(shù)以及應(yīng)捕撈體重在內(nèi)的魚(yú)的條數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,,的中點(diǎn),平面.

(1)求證:平面平面;

(2)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,PC⊥面ABCD,直角梯形ABCD中,∠B=C=90°,AB=4,CD=1PC=2,點(diǎn)MPB上且PB=4PMPB與平面PCD所成角為60°.

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2012年12月18日,作為全國(guó)首批開(kāi)展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測(cè)的74個(gè)城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來(lái),鄭州市霧霾治理取得了很大成效空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個(gè)監(jiān)測(cè)站點(diǎn)監(jiān)測(cè)空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個(gè)監(jiān)測(cè)站點(diǎn),以9個(gè)站點(diǎn)測(cè)得的的平均值為依據(jù),播報(bào)我市的空氣質(zhì)量.

(Ⅰ)若某日播報(bào)的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值

(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天內(nèi).

組數(shù)

分組

天數(shù)

第一組

3

第二組

4

第三組

4

第四組

6

第五組

5

第六組

4

第七組

3

第八組

1

①鄭州市某中學(xué)利用每周日的時(shí)間進(jìn)行社會(huì)實(shí)踐活動(dòng),以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會(huì)實(shí)踐活動(dòng).以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會(huì)實(shí)踐活動(dòng)的概率;

②在“創(chuàng)建文明城市”活動(dòng)中,驗(yàn)收小組把鄭州市的空氣質(zhì)量作為一個(gè)評(píng)價(jià)指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測(cè)數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評(píng)價(jià),設(shè)抽取到不小于180的天數(shù)為的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案