已知圓C:x2+y2+2x-4y+3=0;
(1)若圓C的切線在x軸,y軸上的截距相等,求此切線方程;
(2)求圓C關(guān)于直線x-y-3=0的對稱的圓方程
(3)從圓C外一點P(x1,y1)向圓引一條切線,切點為M,O為原點,且有|PM|=|PO|,求使|PM|最小的P點的坐標(biāo).
(1)圓C:x2+y2+2x-4y+3=0即(x+1)2+(y-2)2=2,
表示圓心為C(-1,2),半徑等于
2
的圓.
設(shè)斜率為-1的切線方程為x+y-a=0,過原點的切線方程為kx-y=0,
則圓心C到切線的距離等于半徑,
可得:
2
=
|-1+2-a|
2
,求得a=-1或3.
再由
2
=
|-k+2|
k2+1
,求得k=2±
6
,
故所求的切線的方程為x+y-3=0或x+y+1=0或y=(2±
6
)x;
(2)由(1)圓C(x+1)2+(y-2)2=2的圓心在(-1,2),半徑等于
2

∵點P(m,n)關(guān)于直線x-y-3=0的對稱的點為P'(n+3,m-3)
∴點(-1,2)關(guān)于直線x-y-3=0對稱的點的
坐標(biāo)為(2+3,-1-3)即(5,-4),
故圓C關(guān)于直線x-y-3=0的對稱的圓方程是(x-5)2+(y+4)2=2;
(3)設(shè)P的坐標(biāo)為(x,y)
由于|PC|2=|PM|2+|CM|2=|PM|2+r2,
∴|PM|2=|PC|2-r2
又∵|PM|=|PO|,∴|PC|2-r2=|PO|2,
∴(x1+1)2+(y1-2)2-2=x12+y12
∴2x1-4y1+3=0即為動點P的軌跡方程.
∵原點在直線2x-4y+3=0上的射影點為(-
3
10
,
3
5
),
∴使|PM|最小的P點的坐標(biāo)為(-
3
10
,
3
5
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

試求以橢圓
x2
169
+
y2
144
=1的右焦點為圓心,且與雙曲線
x2
9
-
y2
16
=1的漸近線相切的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,以坐標(biāo)原點O為圓心的圓與直線:x-
3
y=4
相切.
(1)求圓O的方程;
(2)若圓O上有兩點M、N關(guān)于直線x+2y=0對稱,且|MN|=2
3
,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

我們把形如y=
b
|x|-a
(a>0,b>0)
的函數(shù)稱為“莫言函數(shù)”,并把其與y軸的交點關(guān)于原點的對稱點稱為“莫言點”,以“莫言點”為圓心,凡是與“莫言函數(shù)”圖象有公共點的圓,皆稱之為“莫言圓”.當(dāng)a=1,b=1時,在所有的“莫言圓”中,面積的最小值______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若兩條直線y=x+2a,y=2x+a的交點P在圓(x-1)2+(y-1)2=4的內(nèi)部,則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓x2+y2=1,經(jīng)過點P(-1,2)作圓的切線,則其切線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓M的圓心在直線x-2y+4=0上,且與x軸交于兩點A(-5,0),B(1,0).
(Ⅰ)求圓M的方程;
(Ⅱ)求過點C(1,2)的圓M的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過直線l:y=2x上一點P作圓C:x2+y2-16x-2y+63=o的切線l1,l2,若l1,l2關(guān)于直線l對稱,則點P到圓心C的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線x+
3
y=0繞原點按順時針方向旋轉(zhuǎn)30°所得直線與圓x2+y2-4x+1=0的位置關(guān)系是( 。
A.直線與圓相切
B.直線與圓相交但不過圓心
C.直線與圓相離
D.直線過圓心

查看答案和解析>>

同步練習(xí)冊答案