【題目】如圖是某單位職工的月收入情況畫出的樣本頻率分布直方圖,已知圖中第一組的頻數(shù)為4 000,請根據(jù)該圖提供的信息,解答下列問題.
(1)為了分析職工的收入與年齡、學歷等方面的關(guān)系,必須從樣本中按月收入用分層抽樣方法抽出100人作進一步分析,則月收入在[1 500,2 000)的這組中應(yīng)抽取多少人?
(2)試估計樣本數(shù)據(jù)的中位數(shù)與平均數(shù).
【答案】(1)20(2)17750,1962.5
【解析】
(1)先求得月收入在[1000,1500)的頻率,即可得到樣本容量,求得月收入在[1 500,2 000)的人數(shù),根據(jù)分層抽樣求得答案;
(2)利用中位數(shù)的公式求得中位數(shù),再根據(jù)概率和為1求得月收入在[3000,3500)的頻率,再利用平均數(shù)公式求得結(jié)果.
(1)由題知,月收入在[1000,1500)的頻率為0.0008×500=0.4,
又月收入在[1000,1500)的有4 000人,故樣本容量n10000.
又月收入在[1500,2000)的頻率為0.000 4×500=0.2,
月收入在[1 500,2 000)的人數(shù)為0.2×10000=2 000,
從10 000人中用分層抽樣的方法抽出100人,
則月收入在[1500,2000)的這組中應(yīng)抽取100×=20(人).
(2)月收入在[1000,2000)的頻率為0.4+0.2=0.6>0.5,
故樣本數(shù)據(jù)的中位數(shù)為1500+=1500+250=1750.
由頻率分布直方圖可知, 月收入在[3000,3500)的頻率為
故樣本數(shù)據(jù)的平均數(shù)為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1-(a>0且a≠1)是定義在(-∞,+∞)上的奇函數(shù).
(1)求a的值;
(2)證明:函數(shù)f(x)在定義域(-∞,+∞)內(nèi)是增函數(shù);
(3)當x∈(0,1]時,tf(x)≥2x-2恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級一次數(shù)學考試后,為了解學生的數(shù)學學習情況,隨機抽取名學生的數(shù)學成績,制成表所示的頻率分布表.
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計 |
(1)求、、的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學生,并在這名學生中隨機抽取名學生與張老師面談,求第三組中至少有名學生與張老師面談的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數(shù)據(jù)如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一質(zhì)點從頂點A射向點E(4,3,12),遇長方體的面反射(反射服從光的反射原理),將第i﹣1次到第i次反射點之間的線段記為li(i=2,3,4),l1=AE,將線段l1 , l2 , l3 , l4豎直放置在同一水平線上,則大致的圖形是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB=bcosA.
(1)求 的值;
(2)若sin A=,求sin(C-) 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com