【題目】已知函數(shù)有兩個(gè)極值點(diǎn)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)求證:.
【答案】(1);(2)見(jiàn)解析.
【解析】分析:(Ⅰ) 函數(shù)有兩個(gè)極值點(diǎn),只需有兩個(gè)根,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理與函數(shù)圖象可得當(dāng)時(shí),沒(méi)有極值點(diǎn);當(dāng)時(shí),當(dāng)時(shí),有兩個(gè)極值點(diǎn);(Ⅱ)由(Ⅰ)知,為的兩個(gè)實(shí)數(shù)根,,在上單調(diào)遞減,問(wèn)題轉(zhuǎn)化為,要證,只需證,即證,利用導(dǎo)數(shù)可得,從而可得結(jié)論.
詳解: (Ⅰ)∵,∴.
設(shè),則.
令,解得.
∴當(dāng)時(shí),;當(dāng)時(shí),.
∴.
當(dāng)時(shí),,∴函數(shù)單調(diào)遞增,沒(méi)有極值點(diǎn);
當(dāng)時(shí),,且當(dāng)時(shí),;當(dāng)時(shí),.
∴當(dāng)時(shí),有兩個(gè)零點(diǎn).
不妨設(shè),則.
∴當(dāng)函數(shù)有兩個(gè)極值點(diǎn)時(shí),的取值范圍為.
(Ⅱ)由(Ⅰ)知,為的兩個(gè)實(shí)數(shù)根,,在上單調(diào)遞減.
下面先證,只需證.
∵,得,∴.
設(shè),,
則,∴在上單調(diào)遞減,
∴,∴,∴.
∵函數(shù)在上也單調(diào)遞減,∴.
∴要證,只需證,即證.
設(shè)函數(shù),則.
設(shè),則,
∴在上單調(diào)遞增,∴,即.
∴在上單調(diào)遞增,∴.
∴當(dāng)時(shí),,則,
∴,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某飛行器在4千米高空飛行,從距著陸點(diǎn)A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( )
A.y= ﹣ x
B.y= x3﹣ x
C.y= x3﹣x
D.y=﹣ x3+ x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓:,圓: (,且).
(1)設(shè)為坐標(biāo)軸上的點(diǎn),滿足:過(guò)點(diǎn)P分別作圓與圓的一條切線,切點(diǎn)分別為、,使得,試求出所有滿足條件的點(diǎn)的坐標(biāo);
(2)若斜率為正數(shù)的直線平分圓,求證:直線與圓總相交.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)x∈[﹣2,1]時(shí),不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某單位職工的月收入情況畫出的樣本頻率分布直方圖,已知圖中第一組的頻數(shù)為4 000,請(qǐng)根據(jù)該圖提供的信息,解答下列問(wèn)題.
(1)為了分析職工的收入與年齡、學(xué)歷等方面的關(guān)系,必須從樣本中按月收入用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[1 500,2 000)的這組中應(yīng)抽取多少人?
(2)試估計(jì)樣本數(shù)據(jù)的中位數(shù)與平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、、、是同一平面上不共線的四點(diǎn),若存在一組正實(shí)數(shù)、、,使得,則三個(gè)角、、( )
A. 都是鈍角B. 至少有兩個(gè)鈍角
C. 恰有兩個(gè)鈍角D. 至多有兩個(gè)鈍角
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,已知平面平面.
(1)若,,求證:;
(2)若過(guò)點(diǎn)作直線平面,求證:∥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.
(1)大氣污染可引起心悸、呼吸困難等心肺疾病. 為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
問(wèn)有多大的把握認(rèn)為是否患心肺疾病與性別有關(guān)?
(2)空氣質(zhì)量指數(shù)PM2.5(單位:μg/)表示每立方米空氣中可入肺顆粒物的含量,這個(gè)值越高,就代表空氣污染越嚴(yán)重. 某市在2016年年初著手治理環(huán)境污染,改善空氣質(zhì)量,檢測(cè)到2016年1~5月的日平均PM2.5指數(shù)如下表:
月份x | 1 | 2 | 3 | 4 | 5 |
PM2.5指數(shù)y | 79 | 76 | 75 | 73 | 72 |
試根據(jù)上表數(shù)據(jù),求月份x與PM2.5指數(shù)y的線性回歸直線方程,并預(yù)測(cè)2016年8月份的日平均PM2.5指數(shù) (保留小數(shù)點(diǎn)后一位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),分別為線段上的動(dòng)點(diǎn),且滿足
(1)若求直線的方程;
(2)證明:的外接圓恒過(guò)定點(diǎn)(異于原點(diǎn))。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com