【題目】田忌賽馬是史記中記載的一個故事,說的是齊國將軍田忌經常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個必勝策略:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注假設田忌的各等級馬與某公子的各等級馬進行一場比賽獲勝的概率如表所示:
田忌的馬獲勝概率公子的馬 | 上等馬 | 中等馬 | 下等馬 |
上等馬 | 1 | ||
中等馬 | |||
下等馬 | 0 |
比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
如果按孫臏的策略比賽一次,求田忌獲勝的概率;
如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數學期望.
【答案】(1)0.72;(2)見解析
【解析】
由題意知,田忌第三場比賽必輸,則前兩場比賽都勝,因而利用相互獨立事件的概率乘法公式可得出答案;
先計算出田忌比賽一次獲勝的概率,并計算出田忌比賽一次獲利的數學期望,這個期望乘以12即可得出田忌一年賽馬獲利的數學期望。
(1)記事件A:按孫臏的策略比賽一次,田忌獲勝,
對于事件A,三場比賽中,由于第三場必輸,則前兩次比賽中田忌都勝,
因此,;
設田忌在每次比賽所得獎金為隨機變量,則隨機變量的可能取值為和1000,
若比賽一次,田忌獲勝,則三場比賽中,田忌輸贏的分布為:勝勝勝、負勝勝、勝負勝、勝勝負,
設比賽一次,田忌獲勝的概率為,則.
隨機變量的分布列如下表所示:
1000 | ||
所以,.
因此,田忌一年賽馬獲利的數學期望為金。
科目:高中數學 來源: 題型:
【題目】某企業(yè)為了增加某種產品的生產能力,決定改造原有生產線,需一次性投資300萬元,第一年的年生產能力為300噸,隨后以每年40噸的速度逐年遞減,根據市場調查與預測,該產品的年銷售量的頻率分布直方圖如圖所示,該設備的使用年限為3年,該產品的銷售利潤為1萬元噸.
1根據年銷售量的頻率分布直方圖,估算年銷量的平均數同一組中的數據用該組區(qū)間的中點值作代表;
2將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區(qū)間的中點值作年銷量的估計值,并假設每年的銷售量相互獨立.
根據頻率分布直方圖估計年銷售利潤不低于180萬的概率和不低于220萬的概率;
試預測該企業(yè)3年的總凈利潤年的總凈利潤年銷售利潤一投資費用
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】眾所周知,大型網絡游戲(下面簡稱網游)的運行必須依托于網絡的基礎上,否則會出現頻繁掉線的情況,進而影響游戲的銷售和推廣.某網游經銷商在甲地區(qū)個位置對兩種類型的網絡(包括“電信”和“網通”)在相同條件下進行游戲掉線測試,得到數據如下:
(Ⅰ)如果在測試中掉線次數超過次,則網絡狀況為“糟糕”,否則為“良好”,那么在犯錯誤的概率不超過的前提下,能否說明網絡狀況與網絡的類型有關?
(Ⅱ)若該游戲經銷商要在上述接受測試的電信的個地區(qū)中任選個作為游戲推廣,求、兩地區(qū)至少選到一個的概率.
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調查,將收集的數據分成,,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.
(1)請根據直方圖中的數據填寫下面的2×2列聯表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?
課外體育不達標 | 課外體育達標 | 合計 | |
男 | 60 | ||
女 | 110 | ||
合計 |
(2)現按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調查,記“課外體育不達標”的人數為X,求X的分布列和數學期望.參考公式:
P(K2≥k0) | 0.15 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的最大值為,其圖像相鄰的兩條對稱軸之間的距離為,且的圖像關于點對稱,則下列結論正確的是( ).
A.函數的圖像關于直線對稱
B.當時,函數的最小值為
C.若,則的值為
D.要得到函數的圖像,只需要將的圖像向右平移個單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設為坐標原點,過點的動直線與橢圓交于兩點。是否存在常數,使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某調查機構對某校學生做了一個是否同意生“二孩”抽樣調查,該調查機構從該校隨機抽查了100名不同性別的學生,調查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:
同意 | 不同意 | 合計 | |
男生 | a | 5 | |
女生 | 40 | d | |
合計 | 100 |
(1)求 a,d 的值,根據以上數據,能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;
(2)將上述調查所得的頻率視為概率,現在從所有學生中,采用隨機抽樣的方法抽取4 位學生進行長期跟蹤調查,記被抽取的4位學生中持“同意”態(tài)度的人數為 X,求 X 的分布列及數學期望.
附:
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com