【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名學(xué)生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調(diào)查,將收集的數(shù)據(jù)分成,,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學(xué)生評價為“課外體育達標”.
(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關(guān)?
課外體育不達標 | 課外體育達標 | 合計 | |
男 | 60 | ||
女 | 110 | ||
合計 |
(2)現(xiàn)按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學(xué)生中隨機抽取3人參加體育知識問卷調(diào)查,記“課外體育不達標”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.參考公式:
P(K2≥k0) | 0.15 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)在犯錯誤的概率不超過0.01的前提下不能認為“課外體育達標”與性別有關(guān);(2)見解析
【解析】
(1)由題意得“課外體育達標”人數(shù)為,列出的列聯(lián)表,計算得出的值,即可作出判斷;
(2)由分層抽樣在“課外體育達標”和“課外體育不達標”的學(xué)生中抽取的人數(shù),得到的所有可能取值,求得每個隨機變量對應(yīng)的概率,得出分布列,利用公式求解。
(1)由題意得“課外體育達標”人數(shù)為,
則“課外體育不達標”人數(shù)為150,所以列聯(lián)表如下:
課外體育不達標 | 課外體育達標 | 合計 | |
男 | 60 | 30 | 90 |
女 | 90 | 20 | 110 |
合計 | 150 | 50 | 200 |
所以.
所以在犯錯誤的概率不超過0.01的前提下不能認為“課外體育達標”與性別有關(guān).
(2)由題意采用分層抽樣在“課外體育達標”的學(xué)生中抽取2人,在“課外體育不達標”的學(xué)生中抽取6人,由題意知:的所有可能取值為1,2,3,
;;.
故
1 | 2 | 3 | |
故的數(shù)學(xué)期望為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三角形的中線與中位線相交于點,已知是繞旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列四個命題,其中正確的命題的序號是( )
A.動點在平面上的射影在上
B.恒有平面平面
C.三棱錐的體積有最大值
D.直線與不可能垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機變量ξi滿足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<,則( )
A. E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)
B. E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)
C. E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)
D. E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用合適的方法表示下列集合,并說明是有限集還是無限集.
(1)到A、B兩點距離相等的點的集合
(2)滿足不等式的的集合
(3)全體偶數(shù)
(4)被5除余1的數(shù)
(5)20以內(nèi)的質(zhì)數(shù)
(6)
(7)方程的解集
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)隨機變量ξ服從正態(tài)分布N(0,1),則下列結(jié)論正確的是( )
①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).
A. ①② B. ②③
C. ①④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說法:
①圖(2)對應(yīng)的方案是:提高票價,并提高成本;
②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;
③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;
④圖(3)對應(yīng)的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】歷史上,許多人研究過圓錐的截口曲線.如圖,在圓錐中,母線與旋轉(zhuǎn)軸夾角為,現(xiàn)有一截面與圓錐的一條母線垂直,與旋轉(zhuǎn)軸的交點到圓錐頂點的距離為,對于所得截口曲線給出如下命題:
①曲線形狀為橢圓;
②點為該曲線上任意兩點最長距離的三等分點;
③該曲線上任意兩點間的最長距離為,最短距離為;
④該曲線的離心率為.其中正確命題的序號為 ( )
A. ①②④B. ①②③④C. ①②③D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程為,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的參數(shù)方程為(t為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點是曲線上一點,,求點到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形中(圖1),, , ,過、分別作的垂線,垂足分別為、,已知, ,將梯形沿、同側(cè)折起,使得, ,得空間幾何體(圖2).
(1)證明: 平面;
(2)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com