【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名學(xué)生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調(diào)查,將收集的數(shù)據(jù)分成,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學(xué)生評價為課外體育達標

(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為課外體育達標與性別有關(guān)?

課外體育不達標

課外體育達標

合計

60

110

合計

(2)現(xiàn)按照課外體育達標課外體育不達標進行分層抽樣,抽取8人,再從這8名學(xué)生中隨機抽取3人參加體育知識問卷調(diào)查,記課外體育不達標的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.參考公式:

P(K2≥k0)

0.15

0.05

0.025

0.010

0.005

0.001

k0

2.072

3.841

5.024

6.635

7.879

10.828

【答案】(1)在犯錯誤的概率不超過0.01的前提下不能認為課外體育達標與性別有關(guān);(2)見解析

【解析】

(1)由題意得課外體育達標人數(shù)為,列出的列聯(lián)表,計算得出的值,即可作出判斷;

(2)由分層抽樣在課外體育達標課外體育不達標的學(xué)生中抽取的人數(shù),得到的所有可能取值,求得每個隨機變量對應(yīng)的概率,得出分布列,利用公式求解。

(1)由題意得課外體育達標人數(shù)為,

課外體育不達標人數(shù)為150,所以列聯(lián)表如下:

課外體育不達標

課外體育達標

合計

60

30

90

90

20

110

合計

150

50

200

所以.

所以在犯錯誤的概率不超過0.01的前提下不能認為課外體育達標與性別有關(guān).

(2)由題意采用分層抽樣在課外體育達標的學(xué)生中抽取2人,在課外體育不達標的學(xué)生中抽取6人,由題意知:的所有可能取值為1,2,3,

;;.

X的分布列為:

1

2

3

的數(shù)學(xué)期望為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三角形的中線與中位線相交于點,已知旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列四個命題,其中正確的命題的序號是(

A.動點在平面上的射影在

B.恒有平面平面

C.三棱錐的體積有最大值

D.直線不可能垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機變量ξi滿足P(ξi=1)=piP(ξi=0)=1-pi,i=1,2.若0<p1p2,則(  )

A. E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)

B. E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)

C. E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)

D. E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用合適的方法表示下列集合,并說明是有限集還是無限集.

1)到A、B兩點距離相等的點的集合

2)滿足不等式的集合

3)全體偶數(shù)

4)被5除余1的數(shù)

520以內(nèi)的質(zhì)數(shù)

6

7)方程的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)隨機變量ξ服從正態(tài)分布N(0,1),則下列結(jié)論正確的是(  )

①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).

A. ①② B. ②③

C. ①④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后的函數(shù)圖象.

給出下列四種說法:

①圖(2)對應(yīng)的方案是:提高票價,并提高成本;

②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;

③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;

④圖(3)對應(yīng)的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】歷史上,許多人研究過圓錐的截口曲線.如圖,在圓錐中,母線與旋轉(zhuǎn)軸夾角為,現(xiàn)有一截面與圓錐的一條母線垂直,與旋轉(zhuǎn)軸的交點到圓錐頂點的距離為,對于所得截口曲線給出如下命題:

①曲線形狀為橢圓;

②點為該曲線上任意兩點最長距離的三等分點;

③該曲線上任意兩點間的最長距離為,最短距離為;

④該曲線的離心率為.其中正確命題的序號為 ( )

A. ①②④B. ①②③④C. ①②③D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線的極坐標方程為,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的參數(shù)方程為(t為參數(shù)).

(1)寫出曲線的參數(shù)方程和直線的普通方程;

(2)已知點是曲線上一點,,求點到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在梯形中(圖1),, ,過分別作的垂線,垂足分別為、,已知, ,將梯形沿、同側(cè)折起,使得, ,得空間幾何體(圖2). 

(1)證明: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案