已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明….
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定常數(shù),定義函數(shù),數(shù)列滿足.
(1)若,求及;
(2)求證:對(duì)任意,;
(3)是否存在,使得成等差數(shù)列?若存在,求出所有這樣的,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的各項(xiàng)都是正數(shù),前項(xiàng)和為,且對(duì)任意,都有.
(1)求證:; (2)求數(shù)列的通項(xiàng)公式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和,
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ) 令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}是首項(xiàng)a1=4,公比q≠1的等比數(shù)列,Sn是其前n項(xiàng)和,且成等差數(shù)列.
(1)求公比q的值;
(2)求Tn=a2+a4+a6+…+a2n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足S n + a n= 2n +1.
(1)寫出a1,a2,a3, 并推測a n的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律。下圖是一個(gè)11階楊輝三角:
(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14個(gè)數(shù)與第15個(gè)數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35。顯然,1+3+6+10+15=35。事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù)。試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知數(shù)列的前 n項(xiàng)和為,滿足,且.
(Ⅰ)求,;
(Ⅱ)若,求證:數(shù)列是等比數(shù)列。
(Ⅲ)若 , 求數(shù)列的前n項(xiàng)和。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com